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1. Introduction 

One of the fluid/structure impact problems 
involves a body entering a free surface at high 
speed. The process may last for a very short 
period of time but it could create very large 
pressure and impulse force. A large body of 
published work has been focusing on wedge 
entering water with vertical velocity, or single 
degree of freedom. This includes a single or 
twin wedges at constant entry speed (e.g. Zhao 
& Faltinsen 1993, Wu, 2006, Xu, Duan & Wu 
2008), or in free fall (e.g.Wu, Sun & He 2004, 
Xu, Duan & Wu 2009). The present work 
considers a wedge entering the water through 
the free fall motion in three degrees of freedom, 
which does not seem to have been considered 
previously. The stretched coordinate system 
method and the auxiliary function method are 
used together with the boundary element 
method for the complex potential. Some 
simulation results are provided and more will 
be presented in the workshop.  
 
2. Mathematical model 
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Fig.1 Sketch of the problem 

 
We consider the free fall water entry 

problem of a two dimensional wedge with 
vertical, horizontal and rotational velocities. A 
Cartesian coordinate system yxo −−  is 
defined, in which x  is along the undisturbed 
free surface and y  points upwards. At time 

0=t , the tip of the wedge is at the origin of 
the system. Let jViUU

rrv
−=  be the 

translational velocity of the centre of the mass 
of the wedge, and k

vv
ω=Ω  be the rotational 

velocity, where i
r

 and j
r

 are the unit vectors 
in the x  and y  directions respectively and 

jik
rrr

×= . Here minus sign has been taken 
before V  because the vertical velocity is 
assumed to be positive when the body moves 
downwards. When the fluid is assumed to be 
inviscid and incompressible, and the flow is 
irrotational, the velocity potential φ  can be 
introduced, which satisfies the Laplace 
equation 

02 =∇ φ                             (1) 

in the fluid domain. On the wedge surface 0S  
we have 
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where ),( yx nnn =v  is the normal vector on 
the body surface pointing out of the fluid 
domain and jYiXX

rrv
+=  is the position vector 

from the centre of the mass of the body. The 
Eulerian form of the dynamic and kinematic 
boundary conditions on the free surface FS  
or ς=y  can be written as 
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where the gravity effect has been ignored in 
Eq.(3). 

In the Lagrangian framework, the free 
surface boundary conditions can be written as 
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Here we use the similarity solution as the 
initial solution. This is then followed by the 
time stepping method in the stretched 
coordinate system. We define 
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The introduction of the stretched system 
method avoids the difficulty at the early stage 
in the simulation in the physical domain (Zhao 
& Faltinsen 1993, Lu, He & Wu 2000). 
Another advantage of the stretched coordinate 
system method is that the sizes of the elements 
and computational domain remain more or less 
the same in this system, while they vary in the 
physical system. 

For the free fall motion considered in this 
paper, it is important to decouple the mutual 
dependence between the body acceleration and 
fluid flow. Here we adopt the auxiliary 
function technique (Wu & Eatock Taylor 
2003). Based on Newton’s second law, we 
have 
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where 
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and the dot indicates the derivative with 
respect to time. m  in the above equation is 
the mass of the two dimensional wedge of unit 
length, and zzI  is the corresponding rotational 
inertial about the centre of the mass. The 
hydrodynamic force ),(),( 21 yx FFFF =  and 
the moment M  can be obtained from the 
integration of Bernoulli equation, or 
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where ρ  is the density of the liquid. 

For tφ  in the above equation, we have in 
the fluid domain 

02 =∇ tφ                            (14) 

The Bernoulli equation gives 

φφφ ∇∇−=
2
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on the free surface. We also have (Wu 1998) 
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on the body surface. The direct solution of tφ  
is not straightforward because of the 
acceleration term on the right hand side of 



Eq.(16) is still unknown. To decouple the 
mutual dependence of the body motion and the 
fluid flow, we adopt the auxiliary function 
method (Wu & Eatock Taylor 1996, 2003). 
Thus we introduce functions ( )3,2,1=iiχ  
which satisfy the Laplace equation 

02 =∇ iχ                            (17)   

in the fluid domain. We require that on the 
body surface 
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and on the free surface 

0=iχ                              (19)   

On other rigid boundaries, we impose 
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Making use of iχ  and Green’s identity, we 
have 
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Substituting Eqs (12), (13), (16) and (21) into 
(11), we have (Wu & Eatock Taylor, 1996 & 
2003) 
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where ][C  is a matrix with 
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This equation means that the acceleration can 
be found before the pressure distribution. 
 
3. Numerical results 

We have verified the numerical method 
using the experiment data in Wu, Sun & He 
(2004) and the good agreement has been found. 
The method is then applied to various wedges 
in three degrees of freedom through free fall 
motion. Fig.2 gives the results for a wedge of 

4/1 πγ =  and 4/2 πγ =  entering water in 
free fall motion. The initial entry velocity is 

smU /50 = , smV /50 = . The mass of the 
wedge is set as mkgm /100= , and 

245 mkgI zz ⋅= , ml 25.0= , where l  is the 
distance between the mass centre and the apex 
of the wedge. Further discussions will be given 
in the workshop. 

0.0 0.2 0.4
-40

-20

0

 ω
0
= -2rad/sec

 ω
0
= 0 rad/sec

 ω
0
= 2rad/sec

 U&

s 

0.0 0.2 0.4
-60

-40

-20

0

 ω
0
= -2rad/sec

 ω
0
= 0 rad/sec

 ω
0
= 2rad/sec

 V&

s 



0.0 0.2 0.4
-20

0

20

 ω
0
=  -2rad/sec

 ω
0
=  0 rad/sec

 ω
0
=  2rad/sec

 ω&

s

0.0 0.2 0.4

0.0

0.9

1.8

 ω
0
=  -2rad/sec

 ω
0
=  0 rad/sec

 ω
0
=  2rad/sec

U  

s 

0.0 0.2 0.4
0

2

4

 ω
0
= -2rad/sec

 ω
0
= 0 rad/sec

 ω
0
= 2rad/sec

V 

s 

0.0 0 .2 0 .4

-2

0

2

 ω
0
=  -2 rad/sec

 ω
0
=  0  rad/sec

 ω
0
=  2 rad/sec

ω  

s 
 

Fig.2 Motion of a wedge: accelerations and 
velocities in three freedoms degree 
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