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INTRODUCTION 
The incoming waves propagating over a submerged 
structure may, in addition to being diffracted, 
generate higher harmonic waves due to wave 
shoaling effect. The generation of the super 
harmonic waves changes the swell spectrum 
because a significant part of the incoming wave 
energy may be transferred to higher frequencies. 
The higher harmonic waves may debase sailing 
conditions and do harm to coastal structures, so it is 
necessary to take account of their effects. The 
relating experimental and numerical studies can be 
seen for submerged plates and cylinders (Grue, 
1992; Brossard and Chagdali, 2001; Liu et al. 2009), 
but the analysis of the higher-order harmonic waves 
scatting by submerged bar is relatively scare. 
In this paper, the monochromatic wave over a 
submerged bar is investigated using a fully 
nonlinear numerical scheme based on a 
higher-order boundary element method (HOBEM). 
The phase-locked and free higher harmonic modes 
downstream the structure are decomposed by 
means of a two-point method, and their 
characteristics are further studied.  
 
NUMERICAL MODEL  
For wave overtopping a submerged bar (Fig. 1), a 
Cartesian coordinate system Oxyz is defined with 
the origin O in the plane of the undisturbed free 
surface. Fluid is assumed to be ideal, so that a 
velocity potential φ(x, y, z, t) exists and satisfies the 
Laplace equation inside the fluid domain Ω. On the 
instantaneous free surface, both the fully nonlinear 
kinematic and dynamic boundary conditions are 
satisfied. On the solid boundaries (lateral walls and 
bottom), the rigid and impermeable condition is 
imposed. On the inflow boundary SI the fluid 
motion is generated by prescribed second-order 

Stokes wave velocity. Towards the end of the 
computational domain, an artificial damping beach 
is applied on the free surface so that the wave 
energy is gradually dissipated in the direction of 
wave propagation.  
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Fig.1 Sketch of wave propagating over a submerged bar 
 
By using the second Green’s theorem, the 
prescribed boundary value problem can be 
transformed the following boundary integral 
equation:  
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where p and q are source and field points, and α(p) 
is the solid angle. For the Green function G, an 
image Green function is utilized so that the 
integration surface only includes the incident 
boundary and the free surface boundary and 
submerged bar SB. The Green function can be 
obtained by the superposition of the image of the 
Rankine source about the sea bed and the infinite 
images about the two lateral walls and written as 
(Newman, 1992): 
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B is the tank width, and h is the water depth. 
Then the boundary surface is discretized with a 
number of elements. The geometry of each element 
is represented by the shape functions, thus the 
entire curved boundary can be approximated by a 
number of higher-order elements. Within the 
boundary elements, physical variables are also 
interpolated by the same shape functions, i.e. the 
elements are isoparametric. In the integration 
process, the solid angle, the single layer and double 
layer integration are directly resolved (Teng, et al, 
2006). 
Since the discretized integral equation is always 
variant in time, all the boundary surfaces are 
regridded and updated at each time step using the 
mixed Eulerian-Lagrangian scheme and 4th-order 
Runga-Kutta approach. Once the Eq. (1) is solved, 
we can obtain the time history of surface evaluation 
at any position. 
After waves pass the submerged bar, higher-order 
harmonic waves generated by nonlinear wave-wave 
interactions in the shallow water over the bar will 
leave the bar leeward as free waves. So the surface 
elevation at x in the lee side of the bar can be 
written as  
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where ( )F
na  is the amplitudes of the free 

transmitted waves with frequencies of integer times 

of the incident wave frequency; ( )L
na are the 

amplitudes of the nth-order phase-locked waves, 

1( )x  are the initial phase angles of the 

fundamental waves and ( ) ( 2)n x n  the nth 

harmonic free waves; k and kn are the wave number 
of the fundamental waves and the nth harmonic free 
waves, and satisfy the following dispersion 
relations 
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and 
2( ) tanh , 2,3,n nn gk k h n   L          (5) 

respectively. The fundamental wave amplitude, as 
well as the higher-order free and locked wave 
amplitudes, is obtained from the time histories of 
the surface elevation. The Fourier transform is 
introduced as follows 
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where ( )nA x and ( )nB x are the corresponding real and 

imaginary components, respectively. 
Substituting Eq.(3) into Eq.(6) and making use of 
orthogonality of trigonometric function, we may 
obtain 
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Then we can obtain the amplitudes of the nth order 
locked waves and free waves after applying two 
fixed points’ ( x apart) surface elevations into 
Eqs.(9) and (10). 
 
NUMERICAL RESULTS 
 
As an example, the case for monochromic wave 
propagating a submerged bar as shown in Fig.1 was 
considered in this paper. The same problem were 
ever experimentally studied by Bej and Battjes 
(1993) and Luth etal. (1994). In the present 
numerical simulation, some parameters for wave 
period T=2.02s, wave amplitude A=0.01m and  
water depth h=0.4m are used. The corresponding 
computational domain is taken as 9λ 0.12λ (λ=2π/k 
denotes wave length), meshed with 200×2 cells, in 
which the last 1.5λ is used as the damping layer. As 
the image Green function is used in the 



computational domain, meshes are only discretized 
on the surfaces of incident boundary, free surface 
and submerged bar, as shown Fig.2. 
 

 
Fig.2 Meshes used in the computational domain 

 
The comparisons of wave elevation time series at 
specific points (x=2.0m, 12.5m, and 19.0m) among 
the present results, experimental data and the 
solutions of the extended Boussinesq model of 
Nwogu (1993) are given in Fig.3. From the figures, 
it can be seen that there are good agreements for the 
three methods at points x=2.0m and 12.5m. But for 
the point x=19.0m, the Boussinesq model can’t give 
accurate description because the wave nonlinearity 
is stronger behind the shoal. Therefore, the fully 
nonlinear model, such as the present scheme, is 
advised to analyze such problem. 
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(a) x=2.0m 
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                    (c) x=19.0m 
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Fig.3 Comparisons of free surface displacement among the 
experiment, Boussinesq model and present method. 
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Fig.4 Comparison of free surface between the numerical 
solution and the fitting curve. 
 
The results in Fig. 3 show that more higher-order 
harmonic waves are involved at the lee side of the 
submerged bar. So it is necessary to analyze these 
higher-order harmonics. Eq.(3) is used to separate 
various waves at point x=25.75m by truncating n to 
7. The downstream neighbouring point is also used 
here for solving Eqs.(9) and (10). Fig.4 gives the 
comparison of free surface at point x=25.75m 
between the former one and the fitting curve. It 
proves the validity of the present method from good 
agreement. 

Once the parameters ( )L
na , ( )F

na and initial phase angles 

are solved, the various order wave records can be 
obtained as shown in Fig.5. From the figure, it can 
be seen that the periods of second and third-order 
waves are corresponding to 1/2 and 1/3 times wave 
period and phase-locked waves and free waves 



keep same periods but different phases. Locked 
waves are released to the corresponding free wave 
in a large degree after the wave propagating over 
the submerged bar.  
Keeping the submerged bar unchanged, similar 
simulations have been carried out for different 
incident waves and water depths.  
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       Fig.5 Time histories of various order waves 

 
CONCLUSIONS 
The phenomenon of wave propagation over a 
submerged bar is examined by a powerful 

numerical wave tank method. The transmitted 
waves are separated into the free waves and the 
locked waves with different harmonic frequencies. 
Numerical example shows that at the leeside of the 
bar the components of the free waves is much 
larger than the locked waves with the same 
frequency 
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