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Introduction

In this work we try to combine the Green function, using the Green function which satisfies the free
boundary condition, and Rankine methods, using the function −1/(4πr)+1/(4πr∗) for unbounded fluid,
where r is the distance between the field point and the source point; r∗ is that between the field point
and the mirror of the source point, to solve the problem of a ship with non-zero forward speed.

Solving such a problem by only one of these two methods may arise several difficulties at the numerical
stage. Among them we note here that the ship-motion Green function has the singularity and high
oscillation when a field point and a source points both tend to the free surface. In this case the difficulties
are to calculate the wave term of the Green function due to the integration along the dispersion curves
which go to infinity, because of its slow convergence property [1].

Comparing with the Green function method for the ship with non-zero forward speed, the Rankine
method is simpler in application due to the simplicity of the Green function for Rankine, but needs to
introduce a damping zone and large amount of cells to discretize the free surface.

In this work we suggest to divide the fluid domain onto two parts by a control surface of specific
shape, semi-spheroid. This surface separates the problem into two problems: 1) the internal one - the
ship is of any form, the Green function is that for Rankine, domain is finite and all normal derivatives
of velocity potential Φ are known on the ship hull and on the control surface as the solution of the
external problem; 2) the external one - the shape of the control surface is known, semi-spheroid, and
velocity potential is assumed to be known. Across the control surface two additional conditions must
be satisfied: both the velocity potential and its normal derivative are continuous function. The second
problem provides us the Dirichlet-Neumann map which is used to solve the first the problem, and as
result the original one, by Rankine panel method.

The combination of these two methods keeps their advantages and brings some benefits: area to be
discretize becomes smaller, no need to introduce the damping zone, the solution of the problem is that for
unbound fluid domain. The calculation of the Green function for ship motion may be done only once for
large set of the different ships for the one particular velocity U , incoming wave heading β and frequency
ω0, and an additional parameter, which describes the spheroid.

Mathematical formulation

The reference system moving with the ship at the mean forward speed U along the positive x−axis is
defined by letting (x, y) plane coincide with the mean free surface and z−axis be positive upward. It is
assumed that the fluid is ideal with irrotational flow, the wave steepness is small and the depth is infinite.

The problem is solved by decomposing the fluid domain onto two parts (exterior and interior domains)
by a control surface C which is of known predefined shape, see fig 1. Across this surface two boundary
conditions are required to be satisfied: velocity potential Φ(x, y, z) and its normal derivative Φn(x, y, z) are
continuous functions. In the outer region the solution is sought with a help of the Green function method
described in [2] and the Dirichlet-Neumann map DN is computed in order to express normal derivatives
of the velocity potential Φn(x, y, z) using the velocity potential itself: Φn(x, y, z) = DNΦ(x, y, z). These
derivatives are used to find the solution in the inner domain, where it is sought numerically by the
Rankine method.

To simplify and reduce the domain of computation for Rankine method we define the control surface
C as prolate semi-spheroid and it is given as

x = c cosh α cos β, y = c sinhα sin β cos ϕ, z = c sinhα sin β sin ϕ, (1)
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Figure 1. Formulation of the problem.

where 0 6 α < ∞, 0 6 β < π, and −π < ϕ 6 0. The constant c is a scaling factor, the angles ϕ and β
change in the planes yOz and xOy, respectively. By setting parameters c and α we obtain a semi-spheroid
with two main radii Rx = c cosh α and Ry = Rz = c sinhα.

External problem. Application of the Green’s second identity to the exterior domain provides

C0Φe(P ) =
∫

C

[G(P ; Q)Φe
n(Q)−Gn(P ;Q)Φe(Q)] ds(Q)

+ 2iτ

∫

L

ΦeGtydl +
U2

g

∫

L

(
GΦe

ξ − ΦeGξ

)
tydl,

(2)

where G(P, Q) is the Green function for the source with forward speed U , e.g. see [2], Φe(P ) is the velocity
potential in the exterior region, P = (x, y, z) is a field point, Q = (ξ, η, ζ) is a source point, L is the ellipse
formed by intersection of the control surface C with the free surface (waterline for the spheroid), n is
normal vector directed toward to the external region, g is the acceleration due to the gravity, τ = Uω/g
is the Brard number characterizing the flow, ω is encounter frequency defined by the frequency ω0 and
heading β of incoming wave, and the forward speed U through ω = ω0[1 − (Uω0/g) cos β], and ty is
y−component of the unit vector t tangent to the L and oriented clockwise. The derivatives with respect
to ξ are expressed as the following fξ = cβfβ + cϕfϕ + cnfn, where the coefficients cn, cβ , cϕ and product
tydl for the spheroid are

cn = cα =
1
c

sinhα cosβ

cosh2 α− cos2 β
, cβ = −1

c

cosh α sin β

cosh2 α− cos2 β
, cϕ = 0, tydl = −c sinhα cos βdβ. (3)

From the theory of spherical functions [3],[4] we know that any harmonic function on a spheroid can
be presented as infinite series with respect to product of associated Legendre functions Pm

n (cos β) and
sin mϕ or cosmϕ:

u(α, β, ϕ) =
∞∑

m=0

∞∑
n=m+1

2∑
s=1

a(s)
nm(α)S(s)

nm(β, ϕ) =
∑

i

ai(α)Si(β, ϕ), (4)

where S(1)
nm(β, ϕ) = Pm

n (cos β) sin mϕ, S(2)
nm(β, ϕ) = Pm

n (cos β) cos mϕ, and the new index function i =
i(m, n, s), m = 0, 1, 2, ..., n = m + 1,m + 2, ..., s = 1, 2.

So, we can present velocity potential, the Green function and their derivatives on C as follows

Φe(P ) =
∑

i

φi(α)Si(βP , ϕP ), Φe
n(P ) =

∑

i

ψi(α)Si(βP , ϕP ),

G(P, Q) =
∑

i,j

gi,j(α)Si(βP , ϕP )Sj(βQ, ϕQ),

Gn(P,Q) =
∑

i,j

hi,j(α)Si(βP , ϕP )Sj(βQ, ϕQ),

(5)



where βP = β(P ), βQ = β(Q), ϕP = ϕ(P ) and ϕQ = ϕ(Q). Substituting (5) into (2) and then, after
some algebra, we obtain the system of algebraic linear equations

(ψ1, ψ2, ..., ψk, ...)T = DN (φ1, φ2, ..., φk, ...)T
, DN = M−1K, (6)

where the elements of the matrices K and M are

Mmk =
∑

i,j

gi,j(α)Iim

[
Ijk +

U2

g
Jjk,α

]

Kmk = C0Ikm +
∑

i,j

Iim

[
hi,j(α)

{
Ijk +

U2

g
Jjk,α

}
− gi,j(α)

{
2iτJjk +

U2

g
Ĵjk,β

}] (7)

with
Ijk =

∫

C

Sj(β, ϕ)Sk(β, ϕ)dS,

Jjk =
∫

L

Sj(β, ϕ)Sk(β, ϕ)tydl, Jjk,α =
∫

L

cαSj(β, ϕ)Sk(β, ϕ)tydl,

Ĵjk,β = Jjk,β − Jkj,β , Jjk,β =
∫

L

cβSj(β, ϕ)
∂Sk

∂β
(β, ϕ)tydl.

(8)

Internal problem. Application of the Green’s second identity to the interior domain provides

C0Φi =
∫

C

(
GRΦi

n − ΦiGR
n

)
dS −

∫

H

(
GRΦi

n − ΦiGR
n

)
dS −

∫

F

Φi
(
kGR −GR

ζ

)
dS

+ 2iτ

∫

W

ΦiGRtydl − 2iτ

∫

L

ΦiGRtydl − U2

g

∫

L

(
cβΦi

βGR + cnΦi
nGR

)
tydl

+
U2

g

∫

W

(
cuΦi

uGR + cvΦi
vGR + cnΦi

nGR
)
tydl.

(9)

Here 4πGR = −1/r + 1/r∗, r2 = (x− ξ)2 + (y− η)2 + (z− ζ)2, r∗2 = (x− ξ)2 + (y− η)2 + (z + ζ)2, Φi is
the velocity potential in the inner region, n is normal vector directed toward to the inner fluid domain,
H and F are the ship hull and the free surface, respectively, k = ω2/g, W is the ship waterline and the
rest notations are as same as for the external problem.

In (9) the first, fifth and sixth integrals on the right-hand side can be transformed using (5) and
conditions of continuity of velocity potential and its normal derivatives across the control surface C. We
should note that for two problems the normal vectors of C are oppositely directed and, thus, Φi

nin
= −Φe

nex

and GR
nin

= −GR
nex

, where nin = n for the internal problem and nex = n for the external one.
For the point Q ∈ C we can use (4) to present GR(P ;Q) and GR

n (P ;Q) in the form of infinite series

GR(P ; Q) =
∑

i

gR
,i (P, α)Si(βQ, ϕQ), GR

n (P ;Q) = −
∑

i

hR
,i (P, α)Si(βQ, ϕQ). (10)

Substitution (5) and (10) into the first, fifth and sixth integrals on the right-hand side of equation
(9) yields ∑

k

φk(α)Lk, (11)

where

Lk(P, α) =
∑

i

hR
,i (P, α)Iik −

∑

i,m

gR
,i (P, α)DNmk

[
Iim +

U2

g
Jim,α

]

−
∑

i

gR
,i (P, α)

[
2iτJik +

U2

g
Jik,β

]
.

(12)

Next, we should divide the free surface F and the ship hull H onto small panels, Fq, and Hp,
respectively, on which the velocity potential ΦS

r , S = F or S = H, can be calculated by using Nr shape
functions

Φi(P ) = ΦS
r =

Nr∑

b=1

φS
brN S

br(u, v), if P ∈ Sr ⊂ S, (13)



where (u, v) are local coordinates. After substituting (13) into (9) and, then, regrouping the terms, we
obtain the following equation

C0Φi −
∑

k

φk(α)Lk(P, α)− 2iτ
∑

s′
φW

s′

∫

Ws

NW
s′ GRtydl −

∑

p′
φH

p′

∫

Hp

NH
p′ G

R
n dS

+
∑

q′
φF

q′

∫

Fq

NF
q′

(
kGR −GR

ζ

)
dS − U2

g

∑

s′
φW

s′

∫

Ws

(
cu

∂NW
s′

∂u
GR + cv

∂NW
s′

∂v
GR

)
tydl

=
U2

g

∫

W

cnΦi
nGRtydl −

∫

SH

GRΦi
ndS.

(14)

Here we used the notation
∑

s′
φS

s′N S
s′ ≡

NS∑
s=1

Ns∑

b=1

φS
bsN S

bs(u, v). (15)

Then, depending on the location of the point P we consider three cases: 1) P ∈ C, 2) P ∈ H, 3)
P ∈ F . For each case, using the appropriate presentation of the first term in (14) and GR, as function of
P , multiplying (14) by the function F , F = Sm for the first case, F = NH

k′ - the second, and F = NF
n′ -

the third, and integrating the obtained product, we can transform (14) into a matrix form

~φM = ~F , (16)

where ~φ = (φ1, φ2, ..., φ
SH
1 , φSH

2 , ..., φSF
1 , φSF

2 , ...)T is unknown vector; the matrix M and the vector ~F are
known and should be evaluated numerically.

Conclusions

The most complicated part is to compute the DN matrix due to the complexity of the Green function
G(P ; Q) for the moving source. On the other hand, for one velocity U , incoming wave heading β and
frequency ω0, and ratio of the main radii of the spheroid (or parameter α) this computation should be
done only once and the obtained matrix DN can be used for the large amount of bodies of different shapes
which can be surrounded by the spheroid of the same ratio of the main radii. The one of advantages of
presented method is that the solution does not depend on the size of the computational domain and we
do not need to present artificial damping zones to avoid reflected waves.
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