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1 INTRODUCTION 

Some bulbous bows, also used as sonar domes, are made of fibre-reinforced plastic and 
must be sized to sustain slamming loads. This problem involves dealing with the three-
dimensional (3D) water impact of non-slender bodies for which classical strip methods are 
inaccurate [3]. CFD codes using elaborated models lead to accurate results [2] but still suffer 
from high computation costs. As a result, simple practical tools are required for industrial 
applications. The Wagner theory of water impact provides an interesting model that describes 
accurately the initial stage of slamming. The Wagner problem has been extensively studied in 
the two-dimensional and axisymmetric cases but there are still needs for simple solution 
methods for the general 3D geometries. 

This work presents an efficient numerical method to deal with three-dimensional water 
impact problems based on the Wagner approach [6] and the Boundary Element Method 
(BEM) [5]. Indeed, it is proposed to derive an approximated solution of the 3D Wagner 
problem (the intersection line) in the form of a truncated Fourier series. The intersection line 
is determined by an iterative algorithm including two steps: the first step consists in 
computing the displacement at the free surface using the BEM for a guessed intersection line, 
and the second step consists in updating the terms of the Fourier series according to the 
discontinuities of the displacement between the free surface and the wetted surface. 

2 THREE-DIMENSIONAL WAGNER PROBLEM 

The theory of water impact developed by Wagner consists in linearizing the boundary 
conditions of the flow on the body and on the free surface (see Figure 1 below and  [1]). 
Within the Wagner approximation, the displacement potential ϕ  is governed by the following 
system: 
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where f(x, y) is the body shape function and d(t) the penetration depth at instant t. 



  

 
Figure 1: Description of the flow domains in the Wagner theory (from Scolan and Korobkin  [1]). 

 
The Wagner problem consists in determining the intersection line that respects the Wagner 

condition, which requires that the vertical displacement is continuous at the intersection line: 

)(),( tdyxfz −=∂∂ϕ  (2) 

3 GENERAL OUTLINE OF THE METHOD 

Solving equation system (1) for a “wrong” intersection line leads to a discontinuous 
displacement of the surface z=0. Moreover, the discontinuity increases as the “error” on the 
wetted surface increases and therefore it provides a measure of the mismatch between the 
considered (“wrong”) intersection line and the correct one (satisfying the Wagner condition). 
Figure 2 displays the free surface displacement for several incorrect values of the wetted 
surface radius (dotted blue lines) for a cone together with the theoretical free surface 
displacement (red line): 
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Figure 2: Free surface displacement as a function of the normalised wetted surface radius. x denotes the 
radial coordinate and rth is the correct radius of the free surface.  

 
In the present method, it is proposed to find an approximated intersection lineΓ  in the form 

of a truncated Fourier series. Restricting the attention to symmetric impacting bodies, the 
radial coordinate a(θ) of the intersection line is written in the following form: 
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where Nha is the number of terms in the harmonic decomposition. The coefficients ai are 
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determined by adjusting them in order to avoid the displacement discontinuities at Γ . For this 
purpose, the error of continuity is expanded in a truncated Fourier series: 

θθϕ didfzei ).cos()(∫
Γ

+−∂∂= . (4) 

Thus, each component ei of the error of continuity provides a measure of the error on 
component ai. Therefore, in order to determine the intersection line, the nonlinear system 
ei(aj)=0 has to be solved. This is achieved by a fixed-point algorithm with dynamic relaxation 
based on the Aitken method  [4]. At each step n, the intersection line is updated as follows: 
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With the proposed algorithm, it is necessary to compute the displacement of the free 
surface at each iteration. This is achieved using a dedicated Boundary Element model. 

4 COMPUTION OF THE DISPLACEMENT OF THE FREE SURFACE USING A 
BOUNDARY ELEMENT MODEL 

Equation system (1), governing the displacement potential, can be transformed into a 

surface integral governing the displacement q (
z

q
∂
∂= ϕ

) at plane z=0: 
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where ),( 11 yx is a collocation point on the free surface ( WSyx ∉),( 11 ). 
The displacement of the free surface involved in (6) is also expanded in Fourier series in 

order to reduce the number of degrees of freedom: 
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where )(22 θξ ayx +=  is the nondimensional radial coordinate and Nhq is the number of 

terms in the harmonic decomposition. The evolution of the Fourier coefficients )(ξiq  of the 
displacement (as a function of ξ ) is approximated by linear shape functions. 

5 RESULTS 

The method has been implemented and tested on reference geometries such as a cone and 
an elliptic paraboloid. Figure 3 below compares the shape of the wetted surfaces obtained for 
several values of Nha with the analytical solution derived by  [1] for an elliptic paraboloid. It 
can be seen that a good approximation of the intersection line is achieved with Nha=5. The 
proposed solution method for the 3D Wagner problem makes it possible to compute the 
hydrodynamic pressure acting on a 3D body using the Modified Logvinovich Model (MLM) 
[6] and then to compute the hydrodynamic force F by integrating the pressure. Figure 4 below 
depicts the slamming coefficient CS ( )/(2 2VFCS ρ= ) during the water impact at constant 



  

speed of an elliptic paraboloid ( 22 517.0418.1),( yxyxf +≈ ). The MLM results are compared 
to Finite Element results performed by ABAQUS/Explicit using the VOF method and 
experimental data carried out using a hydraulic shock machine at a constant speed V of 12m/s 
(see [7] for more details on the experimental set-up). Results are in very good agreement until 
the total immersion of the mock-up is reached ( 023.0)( ≈td ). Oscillations can be observed on 
the experimental data because of impact induced vibrations of the mock-up. 
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Figure 3: Intersection line for an elliptic 

paraboloid. 
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Figure 4: Slamming coefficient as a function of 

the penetration depth.

6 CONCLUSION 

A fast numerical method for three-dimensional water impact problems is proposed. This 
method is based on the Wagner approach and the displacement potential formulation. With 
the proposed approach, the solution at a particular instant of time is independent of the 
previous instants of time. As a result, it can be computed very quickly. Moreover, the 
accuracy of the solution remains constant as the time increases. 

The prediction of the wetted surface has been first validated by analytical results for an 
elliptic paraboloid. Then, the prediction of the slamming force has been shown to be in good 
agreement with numerical and experimental reference results. Other comparative studies have 
been carried out on several three-dimensional geometries. The proposed method was shown to 
be very promising. Further work will consist in coupling the fluid model to structural 
calculations. Then, industrial applications will be considered. 
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