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1 INTRODUCTION

Some bulbous bows, also used as sonar domes, ale ohdibre-reinforced plastic and
must be sized to sustain slamming loads. This probinvolves dealing with the three-
dimensional (3D) water impact of non-slender bodaswhich classical strip methods are
inaccurate [3]. CFD codes using elaborated moaeld to accurate results [2] but still suffer
from high computation costs. As a result, simplacfical tools are required for industrial
applications. The Wagner theory of water impacvjles an interesting model that describes
accurately the initial stage of slamming. The Wagmeblem has been extensively studied in
the two-dimensional and axisymmetric cases butetlae still needs for simple solution
methods for the general 3D geometries.

This work presents an efficient numerical methoddéal with three-dimensional water
impact problems based on the Wagner approach [8]the Boundary Element Method
(BEM) [5]. Indeed, it is proposed to derive an apgmated solution of the 3D Wagner
problem (the intersection line) in the form of ancated Fourier series. The intersection line
iIs determined by an iterative algorithm includingot steps: the first step consists in
computing the displacement at the free surfacegusie BEM for a guessed intersection line,
and the second step consists in updating the tefmbke Fourier series according to the
discontinuities of the displacement between the sw@face and the wetted surface.

2 THREE-DIMENSIONAL WAGNER PROBLEM

The theory of water impact developed by Wagner istsisn linearizing the boundary
conditions of the flow on the body and on the feesface (see Figure 1 below afij).
Within the Wagner approximation, the displacemaeateptial ¢ is governed by the following

system:

Ap=0 z<0 1)
% = f(xy)-d() ws
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wheref(x, y) is the body shape function adfl) the penetration depth at instant
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Figure 1. Description of the flow domainsin the Wagner theory (from Scolan and Korobkin [1]).

The Wagner problem consists in determining thergetgtion line that respects the Wagner
condition, which requires that the vertical disgla@nt is continuous at the intersection line:

dp/9z=1(x,y)-d(t) @)

3 GENERAL OUTLINE OF THE METHOD

Solving equation system (1) for a “wrong” intersext line leads to a discontinuous
displacement of the surfaze0. Moreover, the discontinuity increases as thecoféron the
wetted surface increases and therefore it provadeseasure of the mismatch between the
considered (“wrong”) intersection line and the ectrone (satisfying the Wagner condition).
Figure 2 displays the free surface displacementséweral incorrect values of the wetted
surface radius (dotted blue lines) for a cone togetwith the theoretical free surface

displacement (red line): , , o
P ( ) 3 Displacement discontinuity

.
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Figure 2: Free surface displacement as a function of the nor malised wetted surfaceradius. x denotesthe
radial coordinate and ry, isthe correct radius of the free surface.

In the present method, it is proposed to find gor@xmated intersection life in the form
of a truncated Fourier series. Restricting thensitte to symmetric impacting bodies, the
radial coordinat@(0) of the intersection line is written in the follavg form:

Nha-1 3)
a(6)= > a cos(d),
i=0

where Nha is the number of terms in the harmonic decompmsitirhe coefficients; are



determined by adjusting them in order to avoiddisplacement discontinuities &t For this
purpose, the error of continuity is expanded iruadated Fourier series:

& = [(2¢/0z- f +d)cos(6).d6. 4
r

Thus, each componemst of the error of continuity provides a measure lté error on
componenta,. Therefore, in order to determine the intersectiar, the nonlinear system
e(a)=0 has to be solved. This is achieved by a fixed4paligorithm with dynamic relaxation
based on the Aitken methddl]. At each stem, the intersection line is updated as follows:

(n+1)

a™ = g™ 4+ gMe (5)

Nha-1

> [eMe™ —(e)?]

(n+) — _ () i=0
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Z (el(n+l) _ el(n))2

i=0

With the proposed algorithm, it is necessary to pot@ the displacement of the free
surface at each iteration. This is achieved usidgdicated Boundary Element model.

4 COMPUTION OF THE DISPLACEMENT OF THE FREE SURFACE USING A
BOUNDARY ELEMENT MODEL

Equation system (1), governing the displacemenemnitl, can be transformed into a

surface integral governing the displacensp(ig =%) at planez=0:

6
Q()Zz- Y2) _ dx,dy, =0, (6)
S(2=0) \/(Xz =X%)"+ (Y2~ Y1)

where(x, y;)is a collocation point on the free surfage, (y,) OWS).
The displacement of the free surface involved igalso expanded in Fourier series in
order to reduce the number of degrees of freedom:
Nhg-1 (7)
a(é.8)= > q(&)cos(d),
i=0

where & =/x? +y? /a(H) is the nondimensional radial coordinate at is the number of
terms in the harmonic decomposition. The evolubbrthe Fourier coefficients (&) of the
displacement (as a function éf) is approximated by linear shape functions.

5 RESULTS

The method has been implemented and tested oremegeometries such as a cone and
an elliptic paraboloid. Figure 3 below comparesshape of the wetted surfaces obtained for
several values dflha with the analytical solution derived 1p¥] for an elliptic paraboloid. It
can be seen that a good approximation of the mtéon line is achieved withha=5. The
proposed solution method for the 3D Wagner probhaakes it possible to compute the
hydrodynamic pressure acting on a 3D body usingvtbdified Logvinovich Model (MLM)

[6] and then to compute the hydrodynamic fdfcey integrating the pressure. Figure 4 below

depicts the slamming coefficieds (Cs = 2F /(pV?)) during the water impact at constant



speed of an elliptic paraboloid (x, y) =1.418x* + 0.517y*). The MLM results are compared

to Finite Element results performed by ABAQUS/Exjiliusing the VOF method and
experimental data carried out using a hydraulickhnachine at a constant spaédf 12m/s
(see [7] for more details on the experimental $gt-Results are in very good agreement until
the total immersion of the mock-up is reachddt]=0. )0ZBscillations can be observed on

the experimental data because of impact inducedtins of the mock-up.
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Figure 3: Intersection linefor an elliptic Figure 4: Slamming coefficient as a function of
paraboloid. the penetration depth.

6 CONCLUSION

A fast numerical method for three-dimensional watepact problems is proposed. This
method is based on the Wagner approach and thiackspent potential formulation. With
the proposed approach, the solution at a partianistant of time is independent of the
previous instants of time. As a result, it can lmenputed very quickly. Moreover, the
accuracy of the solution remains constant as the increases.

The prediction of the wetted surface has been Viadidated by analytical results for an
elliptic paraboloid. Then, the prediction of tharsiming force has been shown to be in good
agreement with numerical and experimental refereeselts. Other comparative studies have
been carried out on several three-dimensional ge@seThe proposed method was shown to
be very promising. Further work will consist in @bag the fluid model to structural
calculations. Then, industrial applications will tensidered.
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