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1. Introduction

The effect of density stratification on the hydrodynamic loads acting on an oscillating submerged
body was considered for some particular cases of stratified fluid (see, for example, the reference book
by Korotkin, 2009). The fluid was bounded above by either a free surface or a rigid plate. The
investigation of ice-wave interaction problem is of interest for the polar oceans covered with ice.
To the author’s knowledge, the effect of an ice-cover was investigated only for wave radiation by a
submerged sphere in homogeneous water (Das & Mandal, 2008).

In this paper, the linear 2-D water-wave problem describing small oscillations of a horizontal
cylinder is considered. The cylinder is submerged in a uniformly stratified fluid with flat bottom. The
fluid is bounded above by a layer of ice-cover modelled as a thin elastic sheet.

2. Statement of the problem

Let a Cartesian coordinate system be taken with the x-axis directed along the undisturbed position
of the ice-cover perpendicular to the cylinder axis, and the y-axis pointing vertically upwards. The
fluid is assumed to be both inviscid and incompressible. The fluid density ρ0(y) increases linearly with
depth: ρ0(y) = ρs(1 − αy), where α > 0 and ρs = ρ0(0). The fluid depth is equal to H. The wave
motions are initiated in the fluid, which is initially at rest, by the small oscillations of a cylinder at a
frequency ω with amplitudes ηj (j = 1, 2, 3) for the sway, heave and roll problems, respectively.

Under the usual assumptions of linear theory, a disturbed pressure in the fluid can be written as

P (x, y, t) = ρsRe

[

exp(iωt)
3

∑

j=1

ηjpj(x, y)

]

,

where pj(x, y) are complex valued functions and t is time. In the Boussinesq approximation, the
function pj(x, y) obeys the equation (see, for example, Miropol’sky, 2001)

∇2pj =
N2

ω2

∂2pj

∂x2
(−∞ < x < ∞, −H < y < 0), N =

√

− g

ρs

dρ0

dy
=

√
αg (1)

except in the region occupied by the cylinder. Here N = const is the buoyancy frequency and g is the
acceleration due to gravity.

The linearized ice-cover condition is
(

B
∂4

∂x4
+ Q

∂2

∂x2
+ g − Mω2

)

∂pj

∂y
+ (N2 − ω2)pj = 0 on y = 0, (2)

where

B =
Eh3

1

12(1 − ν2)ρs
, M =

ρ1h1

ρs
,

E is the Young’s modulus for the ice, ν is its Poisson’s ratio, Q is the compressive force, ρ1 is the
density of the ice and h1 is the small thickness of the ice-cover. When the flexural rigidity B and the
compressive force Q are taken to be zero, so that the ice sheet behaves as a floating set of disconnected
mass points (the broken ice). When in addition also surface density of ice-cover M is taken to be zero,
then upper boundary of fluid becomes a free-surface.

The boundary condition on the closed smooth contour of the submerged body S has the form:

nx
∂pj

∂x
− ny

β2

∂pj

∂y
= ω2nj (x, y ∈ S), β2 =

N2

ω2
− 1. (3)



Here, n = (nx, ny) is the inward normal to the contour S. The notations

n1 = nx, n2 = ny, n3 = (y − y0)n1 − (x − x0)n2

are used where x0, y0 are the coordinates of the center of the roll oscillations.
The boundary condition at the bottom is

∂pj

∂y
= 0 on y = −H. (4)

In the far field a radiation condition should be imposed that requires the radiated waves to be outgoing.
The radiation load acting on the oscillating body is determined by the force F = (F1, F2) and the

moment F3 which, without account for the hydrostatic term, have the form

Fk =
3

∑

j=1

ηjτkj , τkj = ρs

∫

S
pjnkds = ω2µkj − iωλkj (k = 1, 2, 3), (5)

where µkj and λkj are the added mass and damping coefficients, respectively.
The behavior of the solution of the radiation problem (1)-(4) depends significantly on the body

oscillation frequency. When ω < N (β2 > 0) equation (1) is hyperbolic and the oscillations of the body
generate both surface and internal waves in the fluid. When ω > N (β2 < 0) equation (1) becomes
elliptic and only the surface wave may be generated. In what follows, these cases will be considered
separately.

3. Case ω < N

In order to solve problem (1)-(4) we introduce an unknown mass-source distribution σj(x, y) over
the contour S. We can now represent the pressure at any point of the fluid in the form:

pj(x, y) =

∫

S
σj(ξ, η)G(x, y; ξ, η)ds. (6)

Here, G(x, y; ξ, η) is the Green function of the problem, which determines the disturbed pressure in
the fluid initiated by an oscillating mass source with unit strength, where (x, y) is the field point and
(ξ, η) is the source point. The Green function must satisfy the following equation

∂2G

∂y2
− β2 ∂2G

∂x2
= 2πδ(x − ξ)δ(y − η)

with the boundary conditions analogous to (2), (4) and the radiation condition in the far field, and δ
is the Dirac delta-function. Using traditional Fourier techniques, one may find the solution as

G = − iπ

β2

∞
∑

n=0

cos knβ(y + H)

knDn
cos knβ(η + H) exp(−ikn|x − ξ|),

where kn (n = 0, 1, 2, ...) are the real positive roots of the equation

tan(kβH) = C/[kβΛ(k)], C = N2 − ω2, Λ(k) = Bk4 − Qk2 + g − Mω2, (7)

Dn = [sin(2knβH)/(2knβ) + H]/2.

The equation (7) is the dispersion relation which gives different wavenumbers kn (kn < kn+1) for a
given frequency ω. The smallest wavenumber k0 is referred to as the surface-wave mode propagating
along the ice-cover. All other wavenumbers kn (n ≥ 1) are referred to as the internal-wave modes
which exist only at ω < N with kn → ∞ as ω → N .

Using the body boundary condition (3) we obtain the integral equation for determining the function
σj(x, y)

πσj(x, y) −
∫

S
σj(ξ, η)

[

n1
∂G

∂x
− n2

β2

∂G

∂y

]

ds = ω2nj .



After calculating the distribution of the singularities σj(x, y), we can determine the pressure (6)
and the hydrodynamic load (5).

4. Case ω > N

In this case we can also use the distributed-singularity method but for the uniformly stratified
fluid it is more convenient to solve the integral equation for the pressure. Now the equation (1) has
the form

∂2pj

∂x2
+

1

γ2

∂2pj

∂y2
= 0, γ2 = −β2 = 1 − N2

ω2
. (8)

If we introduce the transform ȳ = γy of the vertical coordinate, then in the coordinate system x, ȳ
the equation (8) reduces to the Laplace equation and the body boundary condition (3) reduces to
the value of the normal derivative on the deformed contour, correct to a multiplier depending on the
body geometry. This made it possible to use the affine similitude for determining the hydrodynamic
load acting on an arbitrary contour oscillating in an unbounded uniformly stratified fluid (Ermanyuk,
2002).

Using the Green identity, the boundary conditions (2), (4) and the radiation condition in the far
field, we obtain the integral equation which for points located on the transformed body contour S̄ has
the form:

pj(x, ȳ) =
1

π

∫

S̄

[

pj(ξ, η̄)
∂G

∂n̄
− G(x, ȳ; ξ, η̄)

∂pj

∂n̄

]

ds̄. (9)

Here, the bar denotes the values considered in transformed coordinates.
The Green function G(x, ȳ; ξ, η̄) has the form:

G = ln
r̄

r̄1
+ pv

∫

∞

0

[

A(k, η̄) exp(−kȳ) + B(k, η̄) exp(kȳ)

]

cos k(x − ξ)

T (k)
dk−

iπ

[

A(k0, η̄) exp(−k0ȳ) + B(k0, η̄) exp(k0ȳ)

]

cos k0(x − ξ)

T ′(k0)
(10)

where pv indicates the principal-value integration,

r̄ =
√

(x − ξ)2 + (ȳ − η̄)2, r̄1 =
√

(x − ξ)2 + (ȳ + η̄)2,

A(k, η̄) =

[

C

k
− γΛ(k)

]

ek(η̄−2H̄) −
[

C

k
+ γΛ(k)

]

e−k(η̄+2H̄),

B(k, η̄) = −
{

2γΛ(k)ekη̄ +

[

C

k
− γΛ(k)

]

[ek(η̄−2H̄) − e−k(η̄+2H̄)]

}

,

T (k) = C + γkΛ(k) + [C − γkΛ(k)]e−2kH̄ , T ′(k0) ≡ dT/dk|k=k0
.

The value k0 is the unique positive root of the equation

T (k0) = 0. (11)

This root corresponds to the existence of the flexural-gravity wave at B 6= 0 or the surface wave at
B = Q = 0. However, the equation (11) may not have the positive root in specific cases, for example,
at ω >

√

g/M for the broken ice (Kheysin, 1967). Then the last term in (10) should be omitted.
As a result of solving the integral equation (9), we can determine the pressure distribution along

the body contour and then the corresponding hydrodynamic load.

5. Numerical results

Numerical calculations are performed for a circular cylinder of radius a whose cross-section S is
given by the equation x2 + (y + h)2 = a2, where h is the distance from the center of the cylinder to
the mean upper boundary of the fluid. The following numerical input data are used:

E = 5×109Pa, ρs = 1025 kg m−3, ρ1 = 922.5 kg m−3, h1 = 2 m, Q = 104N m−2, ν = 0.3, N = 0.05 s−1,



a = 10 m, h = 20 m, H = 500 m.

Fig. 1 shows the dispersive curves for the surface wave mode k0 and the first five internal wave
modes (k1, ..., k5). The solid lines correspond to the ice sheet, the dashed line is for the broken ice
and the dash-dotted line is for the free surface. Distinction between these three cases occurs only for
relatively high frequency ω > 10N .

The added-mass and damping coefficients are plotted in Figs. 2, 3. The open and dark symbols
correspond to the hydrodynamic coefficients for sway and heave, respectively: the circles are for the
ice sheet, the triangles are for the broken ice and the squares are for the free surface. The value ω = N
is shown by the arrow in Figs. 2, 3.

More detailed results will be presented at the Workshop.
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