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Green function with dissipation and side wall effect in wave tanks
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The Green function with viscous dissipation associated with a pulsating source in a wave tank is considered
within the theory of visco-potential flow presented in Chen & Dias (2010). The so-called Tank Green function
(TGF) with the side-wall effect in wave tanks is formulated as a formal sum of open-sea Green functions
representing the infinite images between two parallel side walls of the source in the tank. The introduction
of fluid viscosity gives rise to a decay factor in the TGF which is not singular any more at the wavenumbers
associated with the transversal resonances. Furthermore, the new integrals representing the far-field waves
obtained by analyzing the truncated infinite series of the wave component of the open-sea Green function
are expressed as the analytical formulations involving the complementary error function.

1. Tank Green function with dissipation
A Cartesian coordinate system is defined by placing the (x, y)-plane coincided with the undisturbed free
surface and the z-axis oriented positively upward. The x-axis is coincident with the center plane of the tank
whose width is denoted by b. Under the assumption of fairly perfect fluid (Chen & Dias, 2010), the TGF
G(P, Q) representing the velocity potential at a field point P (x, y, z) in the wave tank due to a pulsating
source of unit strength located at the point Q(x′, y′, z′), satisfies the following set of equations :

∇2G(P, Q) = δ(P −Q) P ⊂ D (1a)
Gz − k̄G− i4αGzz = 0 z = 0 (1b)

Gz = 0 z = −h (1c)
Gy = 0 y = ±b/2 (1d)

where δ(·) is the Dirac function and the parameters (k̄, α) are defined as

k̄ = ω2/g and α = µω/(ρg)

with ω the frequency of pulsating source, g the acceleration of the gravity, µ the fluid viscosity and ρ the
fluid density. The solution of (1) can be obtained by considering an infinite number of images of the source
between two parallel side-walls, that is :

G(P, Q) =
∞∑

n=−∞
G0

n(P, Qn) (2)

where G0
n is the open-sea Green function with viscous dissipation satisfying the first three equations in (1),

representing the velocity potential at the point P due to the nth image of the source located at Qn(x′, y′n, z′)
with the coordinate yn defined by :

y′n = (−1)ny′ + nb (3)

The direct computation of the infinite series (2) is slowly convergent. The tank Green function can be
regrouped into two parts which has been proved to be more computationally efficient :

G = GF + GH (4)

with GF a finite series :

GF =
2N+1∑

n=−2N−1

G0
n(P, Qn) (5)

and the remaining by the truncated infinite series

GH =
∞∑

n=N+1

(G0
2n + G0

2n+1 + G0
−2n + G0

−2n−1) (6)



which represents the contribution of the source images far from the field point.
In the following, the new open-sea Green function G0

n with viscous effect is developed and the transfor-
mation of GH into two single integrals whose numerical evaluation method is analyzed.

2. Open-sea Green function with viscosity
The general solution of the open-sea Green function which satisfies the first three equation of (1) can be
written as

4πG0(P, Q) = −1/|PQ| − 1/|PQ2| −H(r, z, z′) (7)

where Q2(x′, y′,−z′ − 2h) is the symmetrical point of Q(x′, y′, z′) with respect to the sea bed z = −h. The
free-surface term H(r, z, z′) under the cylindrical coordinates with r =

√
(x− x′)2 + (y − y′)2 should satisfy

(∂rr + r−1∂r + ∂zz)H = 0 (r, z) ⊂ D (8a)
(∂z − k̄ − i4α∂zz)H = (∂z − k̄ − i4α∂zz)(1/|PQ|+ 1/|PQ2|) z = 0 (8b)

∂zH = 0 z = −h (8c)

By the standard Fourier-Hankel transform of (8), we get the following expression:

H = 2
∫ ∞

0

k + k̄ + i4αk2

k sinh(kh)− (k̄ + i4αk2) cosh(kh)
cosh k(z + h) cosh k(z′ + h) J0(kr) dk (9)

with J0(·) the zeroth-order Bessel function of the first kind defined in Abramowitz & Stegun (1967).
According to the perturbation method, by omitting the terms of order O(α2) or higher, and using the

same technique as in John (1950) to evaluate H, the open-sea Green function with viscous effect can be
expressed as

G0 =
−ik0

2k0h + sinh(2k0h)
cosh k0(z + h) cosh k0(z′ + h)H0(k0r + i4αk0Ir)

−
∞∑

n=1

2kn/π

2knh + sin(2knh)
cos kn(z + h) cos kn(z′ + h)K0(knr + i4αknIr) (10)

in which H0(·) and K0(·) are the zeroth-order Hankel function of the first kind and the zeroth-order modified
Bessel function of the second kind defined in Abramowitz & Stegun (1967), the wavenumbers k0 and kn for
n ≥ 1 are the real roots of the classical dispersion equations :

k0 tanh(k0h) = k̄ and kn tan(knh) = −k̄ (11)

respectively, while the values of k0I and knI for n ≥ 1 are defined by :

k0I = 2k2
0 cosh2(k0h)/[2k0h + sinh(2k0h)] and knI = 2k2

n cos2(knh)/[2knh + sin(2knh)] (12)

which show the explicit relation between (k0I , knI) and (k0, kn) for n ≥ 1, respectively. In (10), the first
term on the right hand side involving H0 is often called the wave component while the second term with the
sum involving K0 is evanescent.

3. Asymptotic part of TGF and integral representations
Assuming that the lowest number 2N +1 in (2) is large enough to neglect the evanescent part of the open-sea
Green function (10), Chen (1994) points out that the asymptotic part GH given by (6) of the TGF can be
rewritten as the sum including two infinite single integrals :

GH =
−ik0 cosh k0(z + h) cosh k0(z′ + h)

2k0h + sinh(2k0h)

4∑
n=1

c(Yn, B)
[
I1(Yn, B) + id(X)I2(Yn, B)/B

]
(13)

in which
c(Yn, B) = ei(2BYn−π/4)/(πB1/2) (14)

and

d(X) =
∞∑

m=0

εm J2m(X)(16m2 − 1)/8 = (4X2 − 1)/8 (15)



where J2m(·) are the 2mth-order Bessel functions of the first kind, ε0 = 1 and εm = 2 for m ≥ 1. In (13),
(14) and (15), we have used :

B = (k0 + i4αk0I)b
X = (k0 + i4αk0I)(x− x′)
Y1 = N + 1− (y − y′)/(2b)
Y2 = N + 1 + (y − y′)/(2b)
Y3 = N + 3/2− (y + y′)/(2b)
Y4 = N + 3/2 + (y + y′)/(2b)

Finally, the two infinite integrals are given by :

I1(Yn, B) =
√

π

∞∑
m=0

ei2mB/(m + Yn)1/2 =
∫ ∞

0

e−Yntt−1/2/(1− ei2B−t) dt (16a)

I2(Yn, B) =
√

π/2
∞∑

m=0

ei2mB/(m + Yn)3/2 =
∫ ∞

0

e−Yntt1/2/(1− ei2B−t) dt (16b)

Using the Taylor development of e−t in the denominator of two infinite integrals (16), the single integral I1

defined by (16a) is approximated in Chen & Xia (2005) by :

Ĩ1 = πeA erfc(
√

A)/
√

(1− ei2B)ei2B (17a)

with A = Yn(e−i2B − 1) and erfc(·) the complementary error function.
In the same way, the single integral I2 defined by (16b) can be approximated by :

Ĩ2 = [
√

π/A− πeA erfc(
√

A)]
√

(1− ei2B)/ei6B (17b)

To note that the single integral I2 (16b) is always convergent since its major value Ĩ2 (17b) is finite regardless
of the value of B. The function ei2B present in (17a) and (17b) has the property :

|ei2B | = |ei2k0b−8αk0Ib| < 1 (18)

since 8αk0Ib > 0 from (12), the value of Ĩ1 (17a) is always finite and the original integral I1 (16a) convergent.
In the case without taking account of viscous effect by putting α = 0, the value Ĩ1 (17a) tends to infinity
for a set of discrete values of B = κπ with κ = 1, 2, · · · , as shown in Chen (1994), which are associated with
the resonance modes of transversal waves between two vertical walls.

4. Discussions and concluding remarks
New formulations of the open-sea Green function with viscous effect in water of finite depth are developed
within the linear theory of visco-potential flow in a fairly perfect fluid (Chen & Dias, 2010). Unlike the
inviscid potential flow, the far-field behavior of the velocity potential represented by the Hankel function in
(10) is :

H0(k0r + i4αk0Ir) ≈ e−4αk0Ir
√

2/[π(k0 + i4αk0I)r] exp(ik0r − iπ/4) (19)

for r →∞. The decay factor e−4αk0Ir represents the dissipation effect of fluid viscosity which is absent in the
classical inviscid potential flow. As illustrated on Figure 1, the magnitude of the complex Hankel function
depicted by its real and imaginary parts decreases as O(1/

√
k0r) without viscous dissipation (α = 0) while it

decays much faster in the order of O(e−4αk0Ir/
√

k0r) with viscous dissipation (α 6= 0). The Green function
with dissipation effect must be particularly interesting in the solution of wave diffraction and radiation
around one or several floating bodies.

The construction of the tank Green function by an infinite series of open-sea Green function to evaluate
the side wall effects in wave tanks is summarized in the paper. The asymptotic part GH defined by the
truncated infinite series (6) is transformed into a sum (13) including two single integrals (16). The new
analysis of the single integrals provides their analytical formulations (17a) and (17b) which represent the
major part of the integrals. The remaining value corresponding to the difference between the original single
integral and the analytical formula can be evaluated numerically and approximated by polynomials. The
analysis of the single integral (16a) and its analytical expression (17a) shows that it is finite due to the



decay factor associated with the dissipation, unlike the classical TGF which is singular at the wavenumbers
associated with the resonance of transversal waves between two parallel side walls.

Another important source of dissipation is due to the contact of waves against the side walls along which
special dampers might be installed to reduce the reflection from the walls. The idea of partial reflection from
the walls can be introduced in the infinite series to represent the deficiency of wave energy. If a constant
partial reflection coefficient is applied in the series, it is mathematically equivalent to introduce an additional
decay factor. The same development as above can be carried out in a much easier way.

A number of studies have been performed in order to evaluate the side-wall effect in wave tanks. Most
of them, such as Eatock Taylor & Hung (1985), Yeung & Sphaier (1989), Kashiwagi (1991) or McIver (1993),
give analytical or semi-analytical solutions using eigenfunction expansion or multipoles with limitation to
bodies of simple geometry such as vertical cylinders placed in the center of wave tank. Some few studies,
like Linton (1993), Chen (1994), Xia (2002) or Chen & Xia (2005), deal with the formulation and numerical
computations of TGF and the first-order and second-order solutions using boundary element method. The
inviscid potential flow free of any dissipation is modeled in these previous studies. The present study on the
TGF including the dissipation effect is expected to give important insight on the realistic effect of side walls
in wave tanks and to be able to provide closer results to the measurement of model tests.
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Figure 1: Free-surface waves with and without viscous dissipation


