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1. Introduction

The idea of focusing of surface waves by un-
derwater lenses was first proposed by Mehlum
& Stamnes (1978). The basic concept is
rather simple: oblique waves are refracted by
changes in depth and so as a wave passes from
a depth h1 to a smaller depth h2, say, the re-
fractive index n determined by n = k2/k1 > 1
allows oblique waves to straighten out, where
k1 and k2 are the wavenumbers for travelling
waves determined by the linear dispersion re-
lation K ≡ ω2/g = ki tanh kihi, i = 1, 2.
Mehlum & Stamnes (1978) and subsequent
later work by these authors used this idea
to consider the focusing of surface waves by
lenses which comprised horizontal underwa-
ter plates forming a ‘Fresnel lens’ (the type
used in lighthouses and overhead projectors
for example) in plan form, although a con-
ventional convex lens would refract waves
equally well. Thus incoming waves passing
across the lens are transformed into a circu-
lar wave which converges at the focal point
of the lens. See, for example, Stamnes et al.
(1983), Murashinge & Kinoshita (1992) and
references therein.

Kudo et al. (1989) used similar ideas, em-
ploying a submerged horizontal plate in the
shape of a lens to refract waves. In plan form
ther lens had an elliptical-arc leading edge
and a circular-arc trailing edge. Here, the
authors were exploiting ray theoretical idea
that incoming parallel rays entering an ellip-
tical domain with refractive index n = 1/ǫ
where ǫ is the ellipticity are exactly focussed
on the far focal point P of the ellipse (see §2).

Here we consider focusing of waves by el-
liptical topographic features. Specifically, we

examine the refraction of waves in otherwise
constant depth h1 incident on an elliptical
mound, with a plateau at depth h2 < h1. Ac-
cording to ray theory high frequency surface
waves will be refracted by the change in depth
and focus above the far focal point of the
elliptical plateau. Of course, the change in
depth could be effected by having waves pass
across a submerged elliptical plate. Such a
problem was considered by Zhang & Williams
(1996) although evidently they are unaware
of the ray theory result of exact focusing.

In order to examine the focusing by el-
liptical topography we consider two separate
approaches. The first, detailed in this ab-
stract, is based on the modified mild-slope
equations (Chamblerlain & Porter (1995))
which represent the three-dimensional fluid
motion by two-dimensional depth-averaged
equations based on the assumption that the
gradient of the bed is small compared to the
wavelength. In this problem we therefore con-
sider a sea-mount which rises gradually and
smoothly from the open depth h1 onto the
elliptical plateau of depth h2.

In a second approach we take a vertically-
sided submerged elliptical mount and this al-
lows us to use exact three dimensional linear
wave theory to consider the diffraction of in-
cident waves, as we can now employ separa-
tion solutions in elliptical coordinates. Re-
sults of this investigation will be presented at
the workshop.

2. Motivation: Ray Theory

Consider an elliptical domain with refrac-
tive index n > 1 and major axis 2a, minor
axis 2b. Then the eccentricity is defined as
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Figure 1: Focusing of an incident ray on the
far focal point of an ellipse

ǫ =
√

1 − b2/a2 and the focal points P and P ′

lie at ±aǫ. See figure 1. According to ray the-
ory, an incident AO ray parallel to the major
axis makes an angle θi with the normal NN ′

to the boundary at O. The ray proceeds from
O at an angle θr with respect to NN ′ where
Snell’s law relates θi to θr by sin θi/ sin θr = n.
The ray intercepts the major axis at P . P ′

is a point at which the ray PO would be re-

flected at O by the boundary back onto the
axis. Then ∠ONP = π − θi and by the sine
rule OP = nNP . Also ∠NOP ′ = θr whilst
∠ONP ′ = θi and now the sine rule gives us
OP ′ = nNP ′. Summing these two results
gives POP ′ = nPNP ′ and, to be indepen-
dent of O, we must have P and P ′ at the focal
points when we get 2a = n2aǫ or n = 1/ǫ.

When considering water waves in the short
wavelength limit, a wave approaching the
point O sees a change in depth along a
curve which is locally straight. Insisting
that there is no change in the component
of the wavenumber parallel to this bound-
ary, gives k1 sin θi = k2 sin θr where k1 and
k2 are wavenumbers of propagating waves in
depths h1 and h2 outside and inside the el-
liptical boundary. Thus an approximate re-
lation, based on short-wavelength theory, for
focusing waves requires

n = k2/k1 = 1/ǫ (1)

be satisfied. The practical implications of this
relation is that for a given ratio h2/h1 < 1
and incident wavenumber k1h1, (1) above de-
termines ǫ required for focusing.

3. Formulation of solution

The sea-bed is given by z = −h(x, y) where
h(x, y) is a continuous function and is such
that h(x, y) = h1, a constant, outside a finite

domain (x, y) ∈ D is assumed arbitrary for
the moment.

Using linearised water wave theory a ve-
locity potential is given by ℜ{Φ(x, y, z)e−iωt}
where ω is the assumed angular frequency of
motion. Then Φ(x, y, z) satisfies

(∇2 + ∂zz)Φ = 0, −h(x, y) < z < 0 (2)

where ∇ = (∂x, ∂y),

Φz − νΦ = 0, on z = 0 (3)

where ν = ω2/g, g is gravitational accelera-
tion and

Φz + ∇h.∇Φ = 0, on z = −h(x, y) (4)

which reduces to Φz = 0, on z = −h1 for
(x, y) 6∈ D.

An incident wave of unit amplitude pro-
gressing at an angle β to the x axis from in-
finity over the flat bed is given by the poten-
tial

Φinc(x, y, z) = eik1(x cos β+y sinβ)f(k1h1, k1z)

where

f(kh, kz) =
cosh(kh+ kz)

cosh kh
(5)

and k = k1 is the real positive root corre-
sponding to h = h1 of

k tanh kh = ν. (6)

The total potential is written as Φ = Φinc +
Φsc where Φsc is the scattered wave potential
resulting from the interaction of the incident
wave with the undulating part of the topog-
raphy in (x, y) ∈ D. At infinity Φsc satisfies
the radiation condition,

Φsc ∼ A(θ; β)

√
2

πk1r
ei(k1r−π/4)f(k1h1, k1z),

as k1r → ∞ where r =
√
x2 + y2, θ =

tan−1(y/x) and A(θ; β) is the diffraction co-
efficient.

An approximate solution is sought by the
mild-slope method. That is, assuming the



depth-dependence assigned to propagating
modes over a locally-flat bed

Φ(x, y, z) ≈ φ(x, y)f(kh, kz) (7)

in which k(h(x, y)) denotes the positive, real
root of (6) where the depth is h(x, y). Cham-
berlain & Porter (1995) implemented the ap-
proximation (7) by using a variational prin-
ciple which replaces (2), (3) and (4) with the
by the single modified mild-slope equation

∇.(u0∇φ) + v0φ = 0, (x, y) ∈ R
2,

v0 = k2u0 + u1∇
2h+ u2(∇h)

2.

}
(8)

where

u0 = sech2kh(2kh + sinh 2kh)/4k. (9)

The coefficients u1 and u2, need not be given
explicitly here; we remark that if u1, u2 are
set to zero, (8) reduces to the simpler mild-
slope equation.

The use of (7) implies that φ(x, y) =
φinc(x, y) + φsc(x, y) where φinc(x, y) =
eik1(x cos β+y sin β) and

φsc(x, y) ∼ A(θ; β)

√
2

πk1r
ei(k1r−π/4), (10)

as k1r → ∞.
Equation (8) is transformed into its canon-

ical form, by writing

φ(x, y) = {u0(h1)/u0(h(x, y))}
1/2ψ(x, y).(11)

Then ψ satisfies

∇2ψ + κ(x, y)ψ = 0, (x, y) ∈ R
2 (12)

where

κ(x, y) = k2 + A∇2h+B(∇h)2 (13)

and, with the abbreviation K = 2kh,

A = −2k/(K + sinhK),

B = k2{K4+4K3 sinhK+3K2(2 cosh2K+1)

+18K sinhK+3 sinh2K(2 coshK+5)}/

{3(K+sinhK)4},

include the functions u1 and u2 appearing in
(8). Finally we mimic the decomposition of
φ writing ψ(x, y) = ψinc(x, y; β) + ψsc(x, y).

We reformulate the problem for ψ as an in-
tegral equation, making using of the fact that,
for (x, y) 6∈ D, (12) reduces to the Helmholtz
equation (∇2 + k2

1)ψ = 0.
Thus, we introduce the Green’s function

G(x, y; x′, y′) ≡ G(x;x′) defined by

(∇2 + k2
1)G = δ(x− x′)δ(y − y′), (14)

for x,x′ ∈ R
2 and given by

G(x;x′) = −1
4
iH0(k1ρ) (15)

where H0(x) is the Hankel function of the
first kind and ρ = |x − x′|. Thus G ∼
(1/2π) ln(k1ρ) as k1ρ → 0 whilst G ∼
−1

4
i
√

2/πk1ρ ei(k1ρ−π/4) as k1ρ→ ∞.
Applying Green’s Identity to ψ(x) and

G(x;x′) over x ∈ R
2 gives the second kind

integral equation

ψ(x′) +

∫∫

D

[κ(x) − k2
1]G(x;x′)ψ(x)dx

= ψinc(x
′; β), x′ ∈ R

2. (16)

The equation (16), when restricted to x ∈ D,
serves as an integral equation for the un-
known reduced potential ψ(x) on D, whilst
ψ is determined elsewhere by applying (16)
to points x 6∈ D.

It is not difficult to express the diffraction
coefficient as

A(θ; β) = 1
4
i

∫∫

D

[κ(x)− k2
1]ψ(x)ψinc(x; θ)dx.

The free surface elevation due to an incident
wave of unit amplitude is given by η(x, y) =
Φ(x, y, 0) and therefore

η(x, y) = {u0(h1)/u0(h(x, y))}
1/2ψ(x, y)

where u0 is given by (9).
The integral equation is solved numerically

as follows. For simplicity consider a rectan-
gular domain D = Dab given by −a ≤ x ≤ a
and −b ≤ y ≤ b and define an N ×M array
of points xi+(j−1)N = (xi, yj) where

xi = a− (i− 1
2
)∆x, i = 1, . . . , N

yj = b− (j − 1
2
)∆y, j = 1, . . . ,M

}



with ∆x = 2a/N and ∆y = 2b/M . The in-
tegral in (16) is approximated using the rect-
angle midpoint rule with evaluations of the
integrand made at x = xi, i = 1, . . . , NM

ψ(x′) + ∆x∆y

NM∑

i=1

[κ(xi) − k2
1]G(xi;x

′)ψ(xi)

= ψinc(x
′; β), (17)

collocating at points x′ = xj , j = 1, . . . , NM
resulting in the system

ψ(xj) + ∆x∆y

NM∑

i=1

[κ(xi) − k2
1]Gijψ(xi)

= ψinc(xj ; β), j = 1, . . . , NM

for unknowns ψ(xj), where Gij = G(xi;xj),
i 6= j , and

Gjj = G̃(xj ;xj) +Rj , i = j,

and G̃(x;x′) = −1
4
iH0(k1ρ) − (1/2π) ln(k1ρ)

is regular as ρ → 0 giving G̃(xj;xj) = (γ −
log 2)/(2π) where γ = 0.577... is Euler’s con-
stant whilst

Rj = [ ln(∆2
x + ∆2

y) + (∆y/∆x) tan−1(∆x/∆y)

+(∆x/∆y) tan−1(∆y/∆x) − 3]/4π

is the result of integrating (1/2π) ln(k1ρ) ex-
actly over the rectangle ∆x by ∆y.

4. Results

Examples of focusing are shown in figs
2(a),(b). In both cases h2/h1 = 1

2
(a mod-

est size to miminise diffraction effects) and
a/h1 = 40. The shape h(x, y) of the topogra-
phy is a function of an elliptical coordinate u
only and consists of a smooth cosine transi-
tion between the values h1 to h2 over half the
range of u. Then in fig 3(a), we have k1h1 = 1
and this determines b/h1 = 26 from (1). In fig
2(b) we have k1h1 = 1

2
from which b/h1 = 27.

In both cases, clear signs of focusing close to
the predicted value of x/h1 = 27 can be seen.
In fig 3(b), signs of phase-related interference
can be seen. These features and others will
be discussed at the workshop.

(a)

(b)

Figure 2: (a) k1h1 = 1 and (b) k1h1 = 1
2
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