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1. Introduction

In the note we consider the classical linear problem
of ship waves, which appears in the framework of
the surface wave theory and describes forward mo-
tion of rigid bodies with a constant speed U in an un-
bounded heavy fluid having a free surface. The fluid
is assumed to be ideal and incompressible; its motion
is steady-state and irrotational. The corresponding
boundary value problem is often referred to as the
Neumann–Kelvin problem; it was studied by many
authors (see [1] and references therein). We shall
consider the two-dimensional statement and the case
when the contours of ships are totally submerged.

It is known (see [1, 8]) that the problem is uniquely
solvable for all values of U except a finite (possibly
empty) set of values. The method of proof gives no
information on the exceptional values and the ques-
tion of their existence was open for many years (it
should be mentioned that [8] provide some bounds;
also in [3] uniqueness is proved for a circular cylin-
der for all values of U). Examples of non-uniqueness
for the case of surface-piercing bodies were found in
[2] by the inverse procedure (see [4, 5]). However,
for the problem of motion of totally submerged bod-
ies the procedure appears to be ineffective.

In the present work we shall construct examples of
non-uniqueness with the help of the uniqueness cri-
teria found recently in [8]. Unlike the inverse proce-
dure the approach [8] allows us to establish existence
of non-uniqueness examples for given geometries of
submerged bodies. Numerical results confirming ex-
istence of non-uniqueness examples are given and
discussed.

2. Statement of the problem

We study the forward motion of submerged rigid
bodies B with wetted surface S = ∂B through an un-
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Figure 1: Notations.

bounded fluid W that has a free surface F (see fig. 1).
A Cartesian coordinate system is attached to the bod-
ies; the x-axis is directed upstream and the y-axis is
directed vertically upwards. The motion of the fluid
is described by a velocity potential u(x,y) satisfying
the following set of conditions (which will be also
referred to as problem (A) below):

∇2u = 0 in W =�2
− \B, (1)

∂2
x u+ν∂yu = 0 on F = {y = 0}, (2)

∂nu = f ∈C(S) on S ∈C1,α, (3)

sup
W
|∇u|< ∞, lim

x→+∞
∂xu(x,0) = 0, (4)

where �2− = {y < 0}, ν = g/U2 is the wave num-
ber, g is the acceleration due to gravity, n is the unit
normal vector on S directed into W , and f = Unx if
impermeability is assumed (here nx is x-component
of the vector). The free surface elevation is equal to
Ug−1∂xu

∣∣
y=0 and the second condition (4) shows that

there are no waves at infinity upstream (see [8]). In
(3) C1,α, 0 < α < 1, is Hölder’s space.

We shall also need an auxiliary problem. Namely,
we shall say that u′ is a solution to the problem (B)
with opposite direction of motion if u′ satisfies (1)–
(3), the first condition (4) and

lim
x→−∞

∂xu′(x,0) = 0.



3. Green’s function and boundary integral
equations

Green’s function G(x,y,ξ,η) is the potential of a
moving source located at a point (ξ,η). The potential
satisfies as a function of the first two arguments the
conditions (2), (4) (where supremum is taken over
�2− with a vicinity of the point (ξ,η) excluded), and
the condition ∇2

x,yG(x,y,ξ,η) = −δ(x− ξ)δ(y−η),
where y,η < 0 and δ is Dirac’s delta-function.

We have (see e.g. [1, § 6.3.1])

G(z,ζ) =− 1
2π

[
log(ν|z−ζ|)+ log(ν|z−ζ|)]

− 1
π

Z ∞

0

ek(y+η)

k−ν
cosk(x−ξ)dk−eν(y+η) sinν(x−ξ),

where z = x + iy, ζ = ξ + iη, the integral is under-
stood as Cauchy principal value.

Following the usual scheme of potential theory we
can seek solutions to the problem (1)–(4) in the form
of a single layer potential (see, e.g., [1, § 2.1])

u(z) =
(
V µ

)
(z), z ∈W, (5)

where (
V µ

)
(z) =

Z

S
µ(ζ)G(z,ζ)dsζ, (6)

and µ is some unknown density belonging to C(S).
The potential (5) satisfies conditions (1), (2), (4)

and the condition (3) leads to the boundary integral
equation

−µ(z)+
(
T µ

)
(z) = 2 f (z), z ∈ S, (7)

where (
T µ

)
(z) = 2

Z

S
µ(ζ)∂n(z)G(z,ζ)dsζ

and the operator is compact in the space L2(S), so
that the equation (7) is Fredholm’s one.

The adjoint operator T ∗ appears in the integral
equation of the direct method for the solution of the
problem (B). This equation can be obtained from
Green’s identity (see, e.g., [8]) and the jump relation-
ship for the double layer potentials.

In [8] it was proved that unique solvability of the
problems (A) and (B) is equivalent to unique solv-
ability of the integral equations or, in other terms, to
the property of the homogeneous boundary integral
equations on S

−µ+T µ = 0, −u′+T ∗u′ = 0, (8)

to have only the trivial solution. We shall denote by Ξ
the set of values ν for which the problems and equa-
tions (8) have non-trivial solutions.

4. Criteria of uniqueness

We shall use the formalism [6] (see also [7, 8]), based
on symmetrization of the integral equations (8). Ap-
plying the operator I− T ∗ to the first equation and
I−T to the second one in (8) we arrive at

−µ+Tµ = 0, T= T +T ∗−T ∗T, (9)

−u′+T′u′ = 0, T′ = T +T ∗−T T ∗. (10)

It is proved in [8] that the equation (9) has the same
set of solutions as the first of the equations (8) and
the same is true for the second equation (8) and (10).

It is important to note that T and T′ are com-
pact and, unlike T , self-adjoint operators with real
eigenvalues λi ∈ σ(T) = σ(T′). It can be observed
that 〈(I − T ∗)(I−T )3,3〉 = 〈(I−T )3,(I−T )3〉 > 0,
where 〈·, ·〉 means scalar product in L2(S):

〈3,4〉=
Z

S
34ds.

Thus, 〈T3,3〉 6 〈3,3〉 and all eigenvalues are submit-
ted to the inequality λi 6 1. Further we shall use the
notation λ1 = max{λi}. It follows from the above
that (8) have only the trivial solution if and only
if λ1 < 1, and non-trivial solutions exist only when
λ1 = 1. Then, Ξ = {ν : λ1 = 1}.

However, this criterion is not suitable for find-
ing examples of non-uniqueness. For this purpose
we can use another new criterion of uniqueness sug-
gested in [8]. It is proved (see [7, 8]) that the dimen-
sions of the eigenspaces ofT and T′ corresponding to
one eigenvalue are equal. Let N1 be the dimension of
the eigenspace corresponding to the maximum eigen-
value λ1. We introduce µ(i)

1 and u′1
(i), i = 1, . . . ,N1,

which are eigenfunctions of T and T′, respectively.
The following assertion is proved in [8].
The equality λ1 = 1 holds if and only if

〈
(I−T ∗)u′1

(i)
,µ( j)

1

〉
= 0

for some i and all j = 1, . . . ,N1. (11)

Analogously, λ1 = 1 if and only if
〈
(I−T )µ(i)

1 ,u′1
( j)〉 = 0

for some i and all j = 1, . . . ,N1. (12)

Some disadvantage of the functionals in (11), (12)
is the fact that they are defined up to a sign even when
we fix ‖µ(i)

1 ‖ = 1 and ‖u′1
(i)‖ = 1. However we can

derive a sufficient condition of non-uniqueness, more
convenient for numerical computations.

Suppose that λ1 is simple and write

u′1 = bµ1 +ζ, (13)



where b is some coefficient, ζ is a function belonging
to the subspace L2(S), consisting of functions orthog-
onal to µ1.

Let λ1 , 1. From definition of eigenvalues we have
(I − T )(I − T ∗)u′1 = (1− λ1)u′1. Applying the op-
erator I − T ∗ we find (I − T ∗)(I − T )(I − T ∗)u′1 =
(1−λ1)(I−T ∗)u′1, or (I−T)µ̂1 = (1−λ1)µ̂1, where
µ̂1 := (I−T ∗)u′1. Since λ1 is simple, µ̂1 differs from
µ1 by a constant non-zero factor. So,

(I−T ∗)u′1 = cµ1,

where c is some coefficient. The latter equality holds
for λ1 = 1 with c = 0.

Therefore,

〈
(I−T ∗)u′1,u

′
1
〉

=
〈
(I−T ∗)u′1,bµ1 +ζ

〉

= b
〈
(I−T ∗)u′1,µ1

〉
.

From (13) it follows that
〈
u′1,µ1

〉
= b

〈
µ1,µ1

〉
and,

〈
µ1,µ1

〉〈
(I−T ∗)u′1,u

′
1
〉

=
〈
u′1,µ1

〉〈
(I−T ∗)u′1,µ1

〉
.

Thus we can conclude that if the eigenvalue λ1 is
simple and the conditions

〈
(I−T ∗)u′1,u

′
1
〉

= 0,
∣∣〈µ1,u′1〉

∣∣ > 0 (14)

hold, then λ1 = 1. An advantage of the functional〈
(I−T ∗)u′1,u

′
1
〉

is the fact that it is defined uniquely
provided ‖u′1‖ = 1. The condition (14) allows us to
give convincing numerical evidence that for a given
geometry non-uniqueness occurs at some ν.

5. Numerical results

In the numerical investigation we use piecewise-
constant and cubic spline collocation schemes for ap-
proximation of the integral operator T . We shall con-
sider two geometries. First of them (geometry (I)
below) consists of two equal ellipses with horizon-
tal and vertical semi-axes a and b, respectively, with
centres at depth d, and distance between centres 2l.
Besides, we do numerical investigations for the con-
tour (geometry (II)) defined by the parametric curve
x(t) = asin t, y(t) = −d + bcos t − ccos2t, where
t ∈ [0,2π] (see fig. 3).

For the geometries in question we are able to find
values νk such that the functional

〈
(I − T ∗)u′1,u

′
1
〉

changes its sign when ν varies through the points.
This situation of crossing is numerically stable and
confirms finding of parameters corresponding to the
non-uniqueness. As examples of the non-uniqueness

νb

d/b

Figure 2: Parameters of non-uniqueness examples
for geometry (II), c/b = 1 and a/b = 1 (solid line),
a/b = 1.5 (dashed line), a/b = 2 (dash-and-point
line). The body is totally submerged for d/b > 1.125.
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Figure 3: Computations for geometry (II) with a/b =
c/b = 1, d/b = 1.2, and νb = 1.993: a) values of
streamfunction on the free surface 3(x,0); b) stream-
lines 3= const.

parameters for the geometry (I) we list the dimen-
sionless values νb = 9.980 and νb = 16.60 for a/b =
0.1, d/b = 1.01, l/b = 1.2; νb = 4.059 and νb =
4.463 for a/b = 1, d/b = 1.01, l/b = 1.1; νb = 4.006
and νb = 4.081 for a/b = 1, d/b = 1.04, l/b = 1.1.
Sets of numerically found non-uniqueness parame-
ters for the geometry (II) are presented in fig. 2.

By using the eigenfunction µ1 it is not difficult
to obtain the corresponding solution to the homoge-
neous problem (1)–(4) in the form u = V µ1 (where
V is the operator defined by (6)). Analogously we
can find a streamfunction 3(z) =

R
S µ1(ζ)H(z,ζ)dsζ,

where 3(z) and H(z,ζ) are harmonic conjugates in z
to u(z) and G(z,ζ), respectively. Shown in fig. 3b is a
picture of the streamlines 3= const for geometry (II)
(the contour of the body is one of the streamlines).

It is important to note that in contrast with the
water-wave problem (see [5]) for the obtained solu-
tions of homogeneous problem (1)–(4) the Dirichlet
energy integral is generally infinite (due to the pres-



νb = 2.046 νb = 3.696

u u

x/bx/b

Figure 4: Computations of u(x,0) for geometry (II)
with a/b = c/b = 1, d/b = 1.15.
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Figure 5: Plots of L = log
(
1−R/(ρb2g)

)
against νb:

(a) geometry (I), a/b = 1, l/b = 1.1, and d/b = 1.04
(solid line), d/b = 1.05 (dashed line); (b) geometry
(II), a/b = c/b = 1, d/b = 1.2.

ence of waves at infinity downstream) and the spec-
trum of the problem is stable, i.e. the values νk ∈ Ξ
change continuously when a parameter (in fig. 2 it is
d/b) is varied.

For the parameters belonging to the curves in fig. 2
it was observed that the downstream waves of cor-
responding solutions disappear when approaching
the upper end-points of the curves. At this limit,
when the contour touches the free surface, the solu-
tion becomes localized inside the inner ‘basin’ sep-
arated by the contour. In fig. 4 values of u(x,0) for
d/b = 1.15 (close to the limit value 1.125) are plotted
against x/b.

For ν , νk we can solve numerically the non-ho-
mogeneous boundary integral equation (7) for the
Neumann data f = Unx and compute the wave re-
sistance

R =−ρ
Z

S
pnx ds,

where p is the pressure on the contour, ρ is the den-
sity of fluid. Details of computations can be found
in [1, § 7.3]; we only mention that it is convenient
to express R in terms of coefficients in the far-field
asymptotics of the solution to (1)–(4).

In fig. 5 we present in a semilogarithmic scale the
wave resistance computed for the geometries (I) and
(II) over intervals of νb including the non-uniqueness
parameters νb = 4.006, νb = 4.081, and νb = 1.993.

For comparison we also show a plot (dashed line in
fig. 5a) for the geometry not having non-uniqueness
examples.

Our computations give evidence to the fact that the
resistance has singularity for ν ∈ Ξ. Another feature
observed in the computation, which may need more
interpretation and investigation, is the existence of
parameters such that the corresponding wave resis-
tance is very close to zero. The minimum value of L
on the curves shown by solid lines in fig. 5 is compa-
rable with the accuracy of computations.

6. Discussion

Non-uniqueness for the two-dimensional Neumann–
Kelvin problem describing motion of totally sub-
merged bodies is discovered numerically. The non-
uniqueness takes place for isolated, depending on the
geometry, values of forward velocity. In order to
construct the non-uniqueness examples an algorithm
based on the uniqueness criteria, found recently in
[8], is developed. Numerical computations of non-
uniqueness parameters, corresponding solutions to
the homogeneous problem and wave resistance for
parameters close to the non-uniqueness values are
given and discussed. It is notable that the criteria
of uniqueness [8] are also applicable for the three-
dimensional case of the problem which assumes fur-
ther generalization of the present results.
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