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Introduction

We present here a solution in the time domain
using the generalized eigenfunction method for
floating bodies which allows the solution for a
given initial displacement (and initial velocity)
to be computed from the frequency domain solu-
tions driven by an incident wave. This method
has been developed for rigid bodies by Hazard &
Lenoir (2002); Meylan (2009), for elastic bodies
by Meylan (2002); Hazard & Meylan (2007) and
previously for floating bodies by Hazard & Loret
(2007). Note that this later paper was very the-
oretically focused and no numerical simulations
were presented and the method was not devel-
oped with such calculations in mind. We present
here a formulation derived for a numerical solu-
tion and some example numerical calculations.

Initial value problem for a freely

floating structure

Consider a surface-piercing structure, con-
strained to move in heave and pitch, floating in
an inviscid and incompressible fluid of constant
finite depth h. The motion of the fluid is assumed
to be irrotational and, along with the amplitude
of the structure motion, sufficiently small so as
to permit its description within the framework of
the linearized water-wave theory. Attention is re-
stricted to two dimensions and Cartesian coordi-
nates (x, z) are chosen with z directed vertically
up-wards and with the origin in the mean free
surface. The floating body problem involves a
dynamic coupling of the motion of the body and
surrounding fluid. A full solution of the problem
requires the simultaneous solution of the fluid
motion, described by the velocity potential Φ,
and the body motion, described by the displace-
ment ξ(t). Only heave and pitch body motions
are considered here so that the displacement is
two-component vector.

The motion of the fluid is governed by

Laplace’s equation subject to various boundary
conditions on each enclosing surface. Therefore,
velocity potential Φ satisfies Laplace’s equation

∇2Φ = 0 (1)

within the fluid and the bed condition

∂Φ

∂n
= 0 on z = −h. (2)

The free-surface elevation ζ(x, t) is related to Φ
through the linearized free-surface conditions

∂Φ

∂t
= −gζ on z = 0, (3)

where g is the acceleration due to gravity, and

∂ζ

∂t
=

∂Φ

∂z
on z = 0. (4)

The motion of the fluid is coupled to the mo-
tion of the structure by the boundary condition
on the structure surface

∂Φ

∂n
= ∂tξ3 n3 + ∂tξ5 n5 on Γ, (5)

with the body motions in heave and pitch deter-
mined by
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(6)

where xc is the x coordinate of the centre of mass
and IA

1
is the (non-dimensionalised) first moment

of the waterplane. In this case where no assump-
tions have been made regarding the geometry of
the body cross-coupling of the modes of motion
(where motion in pitch influences motion in heave
and vice versa) is possible. However, if the body
is symmetric about the z-axis and the centre of
mass and centre of rotation lie on the same cen-
tral axis (it is assumed the centre of rotation lies
at the origin on the free-surface) then IA

1
= 0 and



xc = 0 so that the equations for heave and pitch
decouple and become
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(7)

The absence of coupling between modes results
in a significantly simplified problem and we will
focus on this case.

Spectral formulation

The introduction of the acceleration potential
Ψ = ∂tΦ allows, after some further manipula-
tions, the floating body problem to be written in
the form of an abstract wave equation. In the
case of a floating body with a vertical axis of
symmetry moving in both heave and pitch the
boundary value problem is

∆Ψ = 0 in the fluid, (8a)

∂nΨ = 0 on z = −h, (8b)

Ψ = −ζ on x ∈ F, (8c)

∂nΨ = −

(
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0 1/Im

)

×
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(
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(8d)

and

∂2

t ζ = ∂nΨ, x ∈ F, (8e)

∂2

t ξ = P∂nΨ, x ∈ Γ, (8f)

respectively, where P is a projection operator
which gives the n3 and n5 components of the nor-
mal velocity on the body.

For the spectral formulation we write the evo-
lution equation as

∂2

t

(

ζ
ξ

)

+

(

A11 A12

A21 A22

) (

ζ
ξ

)

= 0 (9)

where the Dirichlet-to-Neumann operators A12,
A21 and A22 map a vector to a scalar, a scalar
to a vector and a vector to a vector, respectively.

The operators A11 and A21 map in the following
way:

A11 : ζ → −Ψn(x), x ∈ F,

A21 : ζ → −∂2

t ξ,
(10)

where Ψ is the solution of Laplace’s equation,
the zero velocity bed condition and the follow-
ing free-surface and structure surface boundary
conditions

Ψ = −ζ on x ∈ F,

∂nΨ =

(

−1/m
(∫

Γ
Ψn3 dS

)

−1/Im

(∫

Γ
Ψn5 dS

)

)

(

n3 n5

)

on ∂Ω.

(11)

Similarly, the operators A12 and A22 map in
the following way:

A12 : ξ → −Ψn(x), x ∈ F

A22 : ξ → −∂2

t ξ,
(12)

where in this case Ψ corresponds to a solution
of Laplace’s equation with a zero normal veloc-
ity on the bed and a zero free-surface elevation
boundary condition:

Ψ = 0 on x ∈ F,

∂nΨ =

(
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∂Ω
Ψn3 dS + Wξ3

)

−1/Im
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(13)

The energy inner product of this matrix is
best expressed in terms of the displacement vec-
tor

ξ =

(

ξ3

ξ5

)

(14)

and the matrix of restoring coefficients

W =

(

W 0
0 IW

)

(15)

as
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ξ

)

,

(
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5
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(16)

We can show that the evolution operator A in
equation (9) is symmetric and we assume this
implies self-adjointness.



Solution as expansion in eigenfunc-

tions

Given that the operator A is self-adjoint (in
the Hilbert space defined by the inner product)
then it possesses a continuous spectrum and its
corresponding eigenfunctions are the frequency-
domain solutions for the floating body water-
wave problem. To fully describe the eigenfunc-
tions it is necessary to specify the incident wave
potential in addition to the frequency. This is be-
cause there are two eigenfunctions for every inci-
dent wave frequency, one corresponding to waves
from the left κ = 1 and one corresponding to
waves from the right κ = −1.

To expand the time-domain solution in terms
of the frequency-domain solutions (eigenfunc-
tions) it is typical to introduce an orthogonal-
ity condition and to normalize the eigenfunctions
based on this condition. In the case of the scat-
tering problem Hazard & Loret (2007) describe
how the eigenfunctions satisfy the same normal-
ization condition with and without the scatter-
ers. It follows that the eigenfunctions satisfy the
same normalization condition with and without
the body and hence the contribution by the body
motion can be ignored. Therefore, the normaliza-
tion condition obtained in the scattering problem
is also valid for the floating body problem

〈(

ζκ(x, k(ω1))ξκ(k(ω1))
)

,
(

ζ ′
κ(x, k(ω2))ξ

′
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)〉

= 2πδ(k1−k2)δκκ′ = 2πδκκ′δ(ω1−ω2)
dω

dk
|ω=ω1

(17)

where it is assumed here (and hereafter) that k
is a function of ω and vice versa as required. So-
lutions of the evolution equation are expanded in
terms of the frequency-domain solutions as fol-
lows

(

ζ(x, t)
ξ(t)

)

=
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where fκ and gκ will be determined from the ini-
tial condition. The initial free-surface elevation
and velocity and the body displacement and ve-

locity vectors are specified as follows

(
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(19)
Taking the inner product of the initial eleva-
tion/displacement equations with respect to a
generalized eigenfunction gives

〈ζ0(x), ζκ(x, k)〉+ξ0.(Wξκ)
∗ = 2πfκ(ω)

dω

dk
(20)

and similarly for the velocity condition

〈ζ̇0(x), ζκ(x, k)〉 + v0.(Wξκ)
∗ = 2πgκ(ω)

dω

dk
.

(21)
If the velocity of the free-surface and body are
both initially zero then gκ(ω) = 0 and the time-
dependent solution becomes

(
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ξ(t)

)

=

1

2π

∫
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[〈ζ0(x), ζκ(x, k)〉 + ξ0.(Wξκ)
∗]×
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(

ζκ(x, k)
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)

dk (22)

where it should be noted that that the inner prod-
uct on the free-surface is explicitly defined as the
integral

〈ζ0(x), ζκ(x, k)〉 =

∫

F

ζ0(x
′)ζκ(x

′, k)∗dx′. (23)

Results

Figure 1 shows a very simple example calculation
for a body of negligible submergence which rests
on the surface between x = −1 and x = 1. The
fluid is excited with an initial pulse and the re-
sulting motion of the free surface and body can
be seen. Further results will be presented at the
workshop.

Summary

We have shown how the generalized eigenfunction
method can be used to calculate the response of
a floating body and have presented some exam-
ple calculations. We hope that the development
of this method will be useful both theoretically
and practically. For example, we may be able to
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Figure 1: The response of a simple floating body by the generalized eigenfunction method.

understand the long time behaviour of a float-
ing body as discussed in Ursell (1964); Maskell
& Ursell (1970). We also aim to make a clear
connection between this method and the stan-
dard solution in the time domain by the memory
effect method Mei (1989).
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