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Introduction

The hydro-structure interfacing in seakeeping is an important problem in the context of the direct calcula-
tion approach for approval of floating systems. Both fatigue and extreme structural response calculations
need to be performed. An efficient tool ensuring the perfect transfer of the loadings issued from hydro-
dynamic analysis is a key element in the overall procedure. The seakeeping calculations are usually done
within the potential flow assumptions, using the Boundary Integral Equation (BIE) techniques. Within
this approach, the fluid flow is represented by a distribution of singularities over the 3D wetted part of the
body which is subdivided in a certain number of panels. In that case an efficient procedure of load transfer
was presented in [2, 4]. For some applications, such as semi-submersible platforms, the hydrodynamic
model includes not only the parts modeled by the panels but also some slender elements (bracings) which
are usually modeled using the Morison formula (e.g. see [1]). Morison formula uses the informations of
the undisturbed fluid flow at the position of element and applies explicit expressions which gives the drag
force and the added inertia forces. The use of the Morison formula in combination with the BIE method
implies several changes in the hydro structure coupling procedure and these changes are discussed in the
present abstract.

General methodology

First we briefly describe the basics of the hydrodynamic and structural modeling principles. Typical
hydrodynamic and structural meshes are shown in Figure 1.

Figure 1: 3D hydrodynamic panel model (left) and 3D FE model of semi-submersible (right).

Hydrodynamic model

As stated in the introduction the hydrodynamic model is composed of two parts: the 3D panel model
and the Morison model. We discuss them separately in the following sections.



3D hydrodynamic panel model

The problem is solved within the potential flow assumptions in frequency domain. The total velocity po-
tential is decomposed into incident ϕI , diffracted ϕD and 6 radiated components ϕRj each corresponding
to one of the 6 rigid body motions ξj :

ϕ = ϕ
I

+ ϕ
D
− iω

6
∑

j=1

ξjϕRj
(1)

The corresponding boundary value problems (BVP) are defined:
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where Vn denotes the body boundary condition which depends on the considered potential:
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where nj denotes the generalized normal vector: nj = n for j = 1, 2, 3 and nj = (R − RG) ∧ n for
j = 4, 5, 6.
Within the BIE approach, the source formulation is used so that the potential at any point in the fluid
is defined by:
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where the source strength σ is found by solving the following integral equation:
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Morison hydrodynamic model

The use of Morison equation assumes that the body is small compared to the wave length so that
the diffraction effects on these parts can be neglected. At the same time a kind of strip approach is
adopted and the slender structure is divided into a number of strips (sections) on which the local force is
computed and the total force is obtained by integrating the different contributions over the length. The
total Morison force is composed of two parts: the added inertia and the drag force which in turn depend
on the local relative accelerations and velocities respectively. The local relative velocity (acceleration) is
the difference between the local fluid velocity and local body velocity. Local velocities and accelerations
in the global coordinate system can be written in the following form:
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ξ̇ = ℜ{−iω(ξ + Ω ∧ RGQ)e−iωt} , ξ̈ = ℜ{−ω2(ξ + Ω ∧ RGQ)e−iωt}

and ξ = ξ1i + ξ2j + ξ3k, Ω = ξ4i + ξ5j + ξ5k. RGQ is the vector joining the overall center of gravity to
the local point Q.
As already mentioned, the Morison equation is applied locally on each strip in its transverse direction,
which means that the above defined velocities and accelerations should be projected in the local coordi-
nate system. We place ourselves in the local coordinate system of the strip and the following notations
are adopted:



v
T

local fluid velocity
γ

T
local fluid acceleration

ξ̇
T

local body velocity

ξ̈
T

local body acceleration

The Morison force can be written in the following form (e.g. see [3]):
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where CD and CM are the drag and added mass coefficients respectively, and D denotes the diameter of
the section.

Structural model

Structural model includes all the structural elements regardless of their position with respect to the water
level. Typical model is presented in Figure 1. Obviously the bracings are part of this model. This means
that the pressure/load transfer should be done on all wetted finite elements. Here below we briefly explain
how this is done for the 3D panel part and for the Morison part.

Coupling procedure

Due to the fundamentally different approaches in 3D hydrodynamic panel model and Morison model,
different strategies are applied for two cases.

Transfer of loads from 3D hydrodynamic model to 3D FE model

In order to ensure a perfect equilibrium of the structural loading, the hydrodynamic pressure components
issued from the solution of the 3D hydrodynamic calculations are integrated over the structural mesh [2].
In order to be able to do this the corresponding pressure should be recalculated on the representative
structural points. This is possible thanks to the source method which is used here and which allows to
recalculate the potential at any point in the fluid:
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where xs = (xs, ys, zs) denotes the structural point and xh = (xh, yh, zh) the hydrodynamic point.
Let us also note that, in the present procedure, the representative points of the structural model are
chosen to be the Gauss points of the finite elements. Indeed, the hydro-structure interface transfers the
hydrodynamic pressure to nodal forces so that the final loading of the FE model consist of the nodal forces
instead of the pressures which is the common procedure in most of the methods in practice. At the same
time the different parts of the pressure are integrated separately, which means that the hydrodynamic
coefficients (added mass, damping, restoring and excitation) will be obtained after the integration over
the FE mesh, which will ensure the perfect equilibrium of the FE model. In summary the FE loading
coming from the hydrodynamic pressure can be written in the form:
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where the superscript S denotes the fact that the integration is performed over the structural mesh.

Transfer of loads from Morison model to 3D FE model

As already mentioned, the Morison equation (6) gives the overall force on the particular section. This
force should be redistributed on the nodes of the finite elements. This can be done in several ways by
assuming different types of pressure distribution. For the sake of simplicity, here we chose to redistribute
the force equally on different FE nodes in the direction of the sectional force. In order to be able to
solve for the body motions the Morison force should be decomposed into the part depending on the



body motions and the part which is motion independent. At the same time the local sectional forces are
integrated over the length of the slender elements and the total force is formally written in the form:
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Note that several coordinate transformations are necessary in order to derive the above hydrodynamic
coefficients which are defined with respect to the global coordinate system placed in the overall center of
gravity.
We can now write the final motion equation for the floating body:
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It is important to note that an iterative procedure should be used to solve the motion equation because
of the drag component of the Morison loading. Due to the fact that all the integrations are performed
over the structural FE mesh, it is clear that the inertia created by the motion issued from the above
equation will be in perfect equilibrium with the external pressure loading.

Few results and conclusions

In Figure 2 (left) first we present the heave motion of semi-submersible platform with and without the
stick hydrodynamic model i.e. with and without the damping induced by the Morison drag forces. The
difference in between two classes of results is significant justifying the present approach. In the same
figure (right) the RAO of the local stresses at the connection of the bracing with the column are presented.
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Figure 2: Heave RAO in head waves with and without drag induced damping (left), and corresponding
stress at a particular structural detail (right).

A consistent hydro-structure interfacing method for loading of the semi-submersible type of off-shore
platforms is presented. The method takes into account all parts of the hydrodynamic loading and ensures
the perfect equilibrium of the FE model.
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