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Analytical solution for the capillary–gravity waves due to an oscillating Stokeslet
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I. INTRODUCTION

Generation of the Cauchy–Poisson waves
(CPW) in a stationary fluid and the Neumann–
Kelvin waves (NKW) in a uniformly running
stream by the initial elevation and impulse at
the surface of a fluid was usually considered in
the framework of linear potential theory. The
singular behavior, as predicted by the potential
theory, of infinite amplitudes for the CPW in the
near region, and for the diverging component of
the NKW near the moving path of the pressure
point, can be removed by the inclusion of the
viscosity [1–3] or the surface tension [4, 5].

Preliminary studies on the combined effects
of viscosity and surface tension on the free-
surface waves in Stokes and Oseen flows have
been performed by Chen et al. [6] and Chen &
Lu [7], respectively. Asymptotic solutions for the
interfacial capillary–gravity waves due to an in-
stantaneous fundamental singularity in a system
of two semi-infinite fluids were recently provided
by Lu & Ng [8]. In this paper, we derive the
analytical solution with the aid of asymptotic
analysis for the capillary–gravity waves due to
an oscillating point force in a Stokes flow.

II. MATHEMATICAL FORMULATION

The governing equations are the continuity
equation

∇ · u = 0, (1)

and the singularly forced Stokes equations

ρ
∂u
∂t

= −∇P + µ∇2u + F exp(iΩt)δ(x− x0),

(2)

where u = (u, v, w) is the disturbed velocity field,
P is the hydrodynamic pressure, ρ and µ are the
density and viscosity of the fluid, respectively.
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F exp(iΩt)δ(x− x0) is the singular force located
at position x0, where F = (0, 0, F ), Ω the oscil-
lating frequency, δ( ) the Dirac delta function,
x = (x, y, z) the field point, and x0 = (0, 0,−h0)
the source point with h0 > 0.

The linearized boundary conditions on the
undisturbed free surface (z = 0) are

∂η

∂t
= w, (3)

µ

(
∂u

∂z
+

∂w

∂x

)
= 0, (4)

µ

(
∂v

∂z
+

∂w

∂y

)
= 0, (5)

p− 2µ
∂w

∂z
+ T

(
∂2η

∂x2
+

∂2η

∂y2

)
= 0, (6)

where p = P−ρgη is the total pressure, η the ele-
vation of the free surface and T the coefficient of
the surface tension. Equation (3) states that no
fluid particles cross the free surface. Equation
(4) represents the vanishing of shearing stress
in the x direction while Eq. (5) in the y direc-
tion. Equation (6) denotes the continuity of nor-
mal stresses on the free surface. In addition, the
initial values of the velocity, the hydrodynamic
pressure and the free-surface elevation are taken
to be those of the quiescent fluid, that is,

u|t=0 = 0, P |t=0 = 0, η|t=0 = 0. (7)

Governing equations (1) and (2) together
with conditions (3) to (7) form a general initial–
boundary-value problem associated with a fun-
damental singularity. The mathematical proce-
dure for dealing with Eqs. (1) to (7) in the re-
mainder of this section is similar to that in Ref.
[3] and is repeated here for the sake of complete-
ness. Next we regard the disturbed flow (u, P )
as the sum of an unbounded singular Stokes flow
(us, Ps) which represents the effect of the singular
force and a bounded regular Stokes flow (ur, Pr)
which represents the influence of the free surface.
Thus, we write

{u, P} = {us(x, t;x0), Ps(x, t;x0)}
+ {ur(x, t), Pr(x, t)}. (8)



As is well known, any continuous vector can
be taken as the sum of an irrotational and a
solenoidal vector, ur = ∇Φ + Vt, where Φ, a
scalar potential function, represents an irrota-
tional flow while Vt represents a rotational flow.
Thus, we have

∇2Φ = 0, (9)

Pr = −ρ
∂Φ
∂t

+ f(t), (10)

∇ ·Vt = 0, (11)
∂Vt

∂t
= ν∇2Vt, (12)

where ν = µ/ρ, f(t) is an undetermined function
of t. Therefore, the boundary conditions can be
expressed in terms of us, Ps, Φ and Vt on the
undisturbed free surface (z = 0),

∂η

∂t
−

(
∂Φ
∂z

+ wt

)
= ws, (13)

2
∂2Φ
∂x∂z

+
∂ut

∂z
+

∂wt

∂x
= −

(
∂us

∂z
+

∂ws

∂x

)
, (14)

2
∂2Φ
∂y∂z

+
∂vt

∂z
+

∂wt

∂y
= −

(
∂vs

∂z
+

∂ws

∂y

)
, (15)

∂Φ
∂t

+ gη + 2ν

(
∂2Φ
∂z2

+
∂wt

∂z

)
− τ

(
∂2η

∂x2
+

∂2η

∂y2

)

=
Ps + f(t)

ρ
− 2ν

∂ws

∂z
, (16)

where τ = T/ρ, (us, vs, ws) and (ut, vt, wt) are
the components of us and Vt, respectively. Next
the function f(t) = −ρΦ(x, y, 0, 0)δ(t) is imposed
in order to satisfy the initial conditions (7).

III. FORMAL SOLUTION AND
ASYMPTOTIC REPRESENTATION

The fundamental solution of Eqs. (1)–(2),
referred to as the oscillating Stokeslet, can be
written as [8]

us =
F · (∇∇− I∇2)

16π3i

∫ c+i∞

c−i∞
ds

∫∫ ∞

−∞
dαdβ

× exp(f)
s(s− iΩ)

[
1
k

exp(−k|z + h0|)

−1
b

exp(−b|z + h0|)
]

, (17)

Ps = −F · ∇
16π3i

∫ c+i∞

c−i∞
ds

∫∫ ∞

−∞
dαdβ

× 1
k(s− iΩ)

exp(−k|z + h0|+ f), (18)

where I is a unit tensor of rank two and f =
iαx + iβy + st, k =

√
α2 + β2, b =

√
s/ν + k2.

By taking a Laplace–Fourier transform, the
solution for the surface elevation is given as

η =
F

8π3iρ

∫ c+i∞

c−i∞
ds

∫∫ ∞

−∞

A exp(f)
s(s− iΩ)D

dαdβ,

(19)

where

A(s, k) = k(s + 2νk2) exp(−kh0)

− 2νk3 exp(−bh0), (20)

D(s, k) = ω2 + (s + 2νk2)2 − 4ν2k3b, (21)

ω(k) =
√

gk + τk3. (22)

With a change of variables {x, y} =
{R cos θ, R sin θ}, {α, β} = {k cos φ, k sinφ},
we may re-write Eq. (19) as

η =
F

4π2ρi

∫ c+i∞

c−i∞
ds

∫ ∞

0

kAJ0(kR) exp(st)
s(s− iΩ)D

dk,

(23)

where J0(kR) is the Bessel function of the first
kind of order zero.

The exact evaluation of the integral expres-
sion (23) for all instants in general can only be
performed numerically. In order to obtain an-
alytically the principal physical features of the
wave motion, it is necessary to adopt the asymp-
totic analysis for the wave integral. Next, the
asymptotic behavior of Eq. (23) shall be studied
for large t with R/t held fixed.

As the first stage, we may replace J0(kR) in
Eq. (23) by its asymptotic formula for large kR,

J0(kR) ∼
(

2
πkR

)1/2

cos
(
kR− π

4

)
. (24)

Then the inversion of the Laplace transform in
Eq. (23) is evaluated by use of the Cauchy residue
theorem. It is easily seen that the integrand in
Eq. (23) has four poles with respect to s, denoted
by sj with j = 1, 2, 3, 4,

sj = (−1)j+1iω − 2νk2 + o(νk2), (j = 1, 2),
(25)

s3 = 0, s4 = iΩ. (26)

By taking a contour integration in the com-
plex s plane, Eq. (23) can be represented by

η = ηS + ηT, (27)



where

ηS =
F

2πρ

2∑

n=1

∫ ∞

0
dk

(
k

2πR

)1/2 AS

iΩDS

× exp
[
(−1)n+1i

(
kR− π

4

)
+ iΩt

]
, (28)

ηT ∼ F

4πρ

2∑

n=1

2∑

j=1

∫ ∞

0
dk

(
k

2πR

)1/2

× exp
(−2νk2t + itΘnj

)

× (−1)j+1s3−j(s3−j − iΩ)ATj

iωs1s2DS
, (29)

{AS(k), DS(k)} = {A(s, k), D(s, k)}|s=iΩ, (30)
ATj(k) = A(s, k)|s=sj , (31)

Θnj = (−1)n+1 1
t

(
kR− π

4

)
+ (−1)j+1ω. (32)

In accordance with the theorem developed
by Lighthill [9, p. 52] for the Fourier-type inte-
grals, the major contribution to the integrals in
Eq. (28) for a large distance comes from the ze-
ros of DS. For small ν, the asymptotic solution
of DS = 0, denoted by kΩ, is readily given by

kΩ(Ω, τ) = k0 − 4iνk2
0Ω

g + 2τk2
0

+ o(ν), (33)

where

k0(Ω, τ) =
1
τ

( a

36

)1/3
− g

(
2
3a

)1/3

, (34)

a(Ω, τ) = 9τ2Ω2 +
(
12g3τ3 + 81τ4Ω4

)1/2
. (35)

A straightforward application of Lighthill’s the-
orem yields the asymptotic solutions for ηS at
large R

ηS ∼ −FAΩ

ρΩ

(
kΩ

2πR

)1/2

× exp
[
−i

(
kΩR− π

4

)
+ iΩt

]
, (36)

where

AΩ(Ω, τ) = AS(k)|k=kΩ
. (37)

For the k integration in Eq. (29), the
method of stationary phase is used for large t
with R/t held fixed. The dominant contribution
to the integral in Eq. (29) stems from the sta-
tionary points of the oscillatory factors of the
integrand. It is easily seen that the stationary
points for Θ12 and Θ21 are the same, which can
be determined by
∂Θ12

∂k
=

R

t
− Cg

=
R

t
− 1

2
(G + 3k2)

(
τ

Gk + k3

)1/2

= 0, (38)

where G = g/τ , Cg(k) = ∂ω/∂k is the group ve-
locity. It is well known that there exists a min-
imum group velocity Cgmin = Cg(kc), which is
given as

Cgmin(τ) = (
√

3− 1)

√
3τ

2

(
G

2
√

3− 3

)1/4

, (39)

kc(τ) =

√(
2√
3
− 1

)
G. (40)

When R/t > Cgmin, Eq. (38) has two real
positive roots, k1(R/t, τ) and k2(R/t, τ) with
0 < k1 < k2 < +∞. Approximate solutions for
k1 and k2 have been provided by Chen and Duan
[5, Eqs. (6) & (8)] for the free-surface capillary–
gravity waves in an inviscid fluid. As it is, the
exact solutions for k1 and k2 can readily be ob-
tained as [8, Eq. (39)]

km(R/t, τ) =
1
36

[X +
√

Q4 + (−1)m
√

2Q5],

(m = 1, 2), (41)

where

X = 4R2/(τt2), (42)

Q1 = −6912G2 + 288GX2 + X4, (43)

Q2 = −576G3 + 36(GX)2 +
√

3G3X2Q1, (44)

Q3 = 48G−X2, (45)

Q4 = 12(3Q2)1/3 + 12GQ3(9/Q2)1/3

− 144G + X2, (46)

Q5 = −6(3Q2)1/3 − 6GQ3(9/Q2)1/3

− 144G + X2 + (432GX + X3)/Q
1/2
4 . (47)

The comparison between the exact solutions in
Eq. (41) and the asymptotic solutions of Chen
and Duan [5, Eqs. (6) & (8)] was illustrated by
Lu and Ng [8, Fig. 2].

When R/t > Cgmin, a straightforward ap-
plication of the stationary phase approxima-
tion yields the formal expression for the viscous
capillary–gravity wave profile for large t with R/t
held fixed,

ηT =
F

2πρ

2∑

m=1

exp(−2νk2
mt)

(
k3

m

R|ω′′m|t
)1/2

× cos ϕm + iω−1Ωsin ϕm

ω2
m − Ω2

+ o(ν/t), (48)



where

ωm = ω(km) =
√

gkm + τk3
m, (49)

ω′′m =
∂2ω(km)

∂k2
=

1
4
(−G2 + 6Gk2

m + 3k4
m)

×
[

τ

(Gkm + k3
m)3

]1/2

, (50)

ϕm = kmR− ωmt + [(−1)m+1 − 1]π/4. (51)

As R/t decreases to approach Cgmin, k1 and
k2 will go together toward the same limit kc while
ω′′m tends to zero. Accordingly, Eq. (48) predicts
that the wave amplitudes will increase without
bounds. In this case, according to the Scorer
method of stationary-phase [10], Eq. (29) can be
approximated by

ηT =
F exp(−2νk2

c t)
2ρ

(
k3

c

2πR

)1/2 (
2

ω′′′c t

)1/3

Ai(b)

× cos ϕc + iω−1Ωsin ϕc

ω2
c − Ω2

+ o(ν/t), (52)

where

ω′′′c =
∂3ω(kc)

∂k3
=

3
8
(G3 + 5G2k2

c − 5Gk4
c − k6

c )

×
[

τ

(Gkc + k3
c )5

]1/2

, (53)

b = (ω′ct−R)
(

2
ω′′′c t

)1/3

, (54)

ωc = ω(kc) =
√

gkc + τk3
c , (55)

ϕc = kcR− ωct− π/4, (56)

and Ai(·) is the Airy function.

IV. CONCLUSIONS

As shown in Eq. (27), the solution for far-
field waves generated by an oscillating Stokeslet
is given by the sum of two wave systems, namely
ηS and ηT. As time goes to infinity, ηS persists
while ηT eventually vanishes due to the presence
of a viscous decay factor exp(−2νk2t). Thus, a
steady-state wave is attained. Accordingly, ηS

can be referred to as the steady-state response
while ηT the transient response. It is observed
that the steady-state response is a monochro-
matic wave while the transient response has a
dispersive behavior. The transient response con-
sist of two components, namely the long gravity-
dominant (m = 1) and short capillary-dominant
(m = 2) waves. The two waves are merged into
one at R/t = Cgmin, which represents the wave
front of the wave systems.
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