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There has been much interest recently for station-keeping in variable waterdepth. This interest is related
to near-shore marine operations like pipe landing and to the expected development of LNG terminals. Some
ongoing Joint Industry Projects (HAWAI, CHEEPP) are addressing associated issues like low-frequency wave
excitation.

In the present paper we greatly simplify the problem by considering the two-dimensional case of a rectangular
barge floating over a variable depth zone confined in-between two semi-infinite domains, with constant depths,
to the left and to the right. This is the same kind of bathymetry as assumed by Belibassakis (2008) who uses
the ”coupled-mode” theory of Athanassoulis & Belibassakis (1999) and presents hydrodynamic coefficients for
a rectangular barge over a sloping bottom. Our main interest is for the drift force and for the way it is being
affected by the varying bathymetry. Some tests in our canal with a rectangular barge floating over a rectilinear
beach have revealed that the mean hydrodynamic force can be acting ”in the wrong direction”, that is toward
the incoming waves. The question is whether that was a non potential effect, due to some viscous contribution,
or to basin related spurious problems like the return current, or whether the drift force, as computed from
potential flow theory, can actually be negative.

The technique that we use to solve the linearized potential flow problem consists in representing the variable
bottom as a succession of steps, thereby dividing the fluid domain in a series of rectangular sub-domains where
eigen-function expansions can be used to express the velocity potential. This technique has been used by many
people interested by wave transformation over varying bathymetry and related phenomena like Bragg scattering
(e.g. see Rey et al. 1992). We have chosen this method because we wanted to be able to tackle the cases of
vertical submarine cliffs or dredged channels, where methods that assume a mild slope would fail. Another
reason is that we aim at treating the transformation of the second-order long wave associated to a bichromatic
wave system: a mild slope for the first-order waves can be very steep for the accompanying long waves.

Figure 1: Geometry.

Figure 1 illustrates the geometry and figure 2 presents our results for the same case as considered by Belibas-
sakis (2008) (figure 2 of his paper), with good agreement.

Coming to the calculation of the drift force, it is known that basically two methods are available: the direct
pressure integration method, and the momentum method, with a control contour around the body. When this
control contour consists in two vertical cuts away from the body, in the two constant waterdepth regions, the
drift force is easily obtained as

Fd =
1
2

ρ g A2

{
CG1

CP1
(1 + R1 R∗1)−

CG2

CP2
T2 T ∗2

}
(1)

with A the incoming wave amplitude, CP1 and CP2 the phase velocities in the upwave and downwave regions with
waterdepths h1 and h2, CG1 and CG2 the group velocities, R1 the reflection coefficient and T2 the transmission
coefficient. But this is the mean force acting both on the body and the sea-floor! To differentiate the body and
sea-floor, a contour closer to the body must be taken, possibly its mean position, or the pressure integration
method must be used.

Both the pressure integration method and the momentum method with control contour at the body involve
the calculation of

∫
C

(∇Φ)2 −→n dl, with the problem that the velocity ∇Φ is singular at the square bilges. As a
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Figure 2: Hydrodynamic coefficients for Belibassakis’ case.

result the numerical accuracy is poor due to slow convergence of the series representation of the potential. In
the paragraph below we present an attempt, not fully successful, at extracting the singular behavior from the
series representation.

For the sake of simplicity we do not consider a wave flow but a channel flow, with the free surface turned
into a rigid lid and an abrupt change of depth from h1 to h2 at x = 0. This problem can easily be solved
by conformal mapping (e.g. see Milne-Thomson, 1969, 10.7). Using the eigen-function expansion method the
velocity potentials in the upstream and downstream regions write:

ϕ1 = U x +
∞∑

n=1

An cosλnz eλnx ϕ2 = U
h1

h2
x + B0 +

∞∑
n=1

Bn cos µnz e−µnx (2)

with λn = nπ/h1 and µn = nπ/h2, while it can easily be shown that I =
∫ −h2

−h1
ϕ2

z(0, z) dz is theoretically equal
to U2 h1/h2 (h1 − h2) (U being the current velocity in the upstream region).

By matching the velocity potentials and their x-derivatives at the common boundary x = 0, and taking
advantage of the orthogonality of the cosλnz (resp. cos µnz) functions over [−h1 0] (resp. [−h2 0]), the
coefficients An and Bn can be obtained to any degree of accuracy, the series being here truncated at the same
order N1. Figure 3 shows the results obtained for h2 I/h1/(h1 − h2)/U2, theoretically equal to 1, when the
calculation of I is analytically performed from the series representations. It can be seen that the numerical
convergence is very bad, more particularly in the case of small and high steps.

Since the singularity of the potential at the square corner is known (z2/3), we decompose the potential ϕ1(0, z)
into an analytical part with the proper singularity and a regular part expressed as a series

ϕ1(0, z) = α F (z) +
Nα∑
n=1

Ãn cos λnz (3)

with

F (z) = |z + h2|2/3 z2 (z + h1)2 − h1 ≤ z ≤ −h2 (4)

F (z) = −1
2
|z + h2|2/3 z2 (z + h1)2 − h2 ≤ z ≤ 0 (5)
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Figure 3: h2 I/h1/(h1 − h2)/U2 vs. (h1 − h2)/h1 for truncation orders from 50 to 400.

where the somewhat arbitrary F (z) function has been chosen so as to fulfil the no-flow condition F ′ ≡ 0 in z = 0
and z = −h1. When F (z) is written as a series F (z) =

∑∞
n=0 Cn cos λnz, since the Ãn are expected to decrease

quickly with n, the coefficient α should turn out to be the limit of the ratio An/Cn as n increases. Actually this
ratio does not evolve monotonically when n increases and some averaging/filtering over the observed oscillations
must be made. This being done more or less empirically to derive the α coefficient, and integrating analytically
again the velocity squared, the following result is obtained for N1 = 100 (left) and N1 = 200 (right), where it
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can be seen that the truncation order must be taken very high to see some improvement and that the case of
small and high steps is still not properly solved.

Putting this problem aside for the moment, we move on to the question whether the drift force can be
negative. We consider a very simple geometry where the motionless barge sits some distance on the weather
side of an abrupt transition from depth h1 to h2 at x = 0. Since the sea-floor is horizontal below the barge
there is no problem with calculating the drift force with the momentum method. We even simplify further the
matter by making use of long wave theory, assuming the waterdepth to be much smaller than the wavelengths.
The fluid domain divides into 4 sub-domains: on the left-hand side of the barge, below the barge, in-between
the barge and the cliff, and the semi-infinite region with depth h2. In the successive sub-domains the velocity
potential takes the form (the common factor Ag/ω being omitted):

ϕ1 = ei k1x + R1 e−i k1x ϕ2 = C2 + D2 x ϕ3 = T3 ei k1x + R3 e−i k1x ϕ4 = T4 ei k2x (6)

with ω = k1

√
g h1 = k2

√
g h2, b the length of the barge and l the distance from the barge to the cliff. The 6

unknowns R1, C2, D2, T3, R3 and T4 are obtained by equating the potentials and the fluxes at the 3 common
boundaries (e.g. see Mei, 1983, 4.2). The drift force is then simply obtained as

Fd =
1
2

ρ g A2 [1 + R1 R∗1 − T3 T ∗3 −R3 R∗3] (7)
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As a numerical application, somewhat arbitrarily (but more or less corresponding to the tests in ECM canal),
we take h1 = 0.8 m, b = 1 m, l = 2 m, and the draft of the barge equal to 0.4 m. The waterdepth on the
lee side h2 is taken successively as equal to h1, h1/4, h1/16, h1/64 and then nil (replaced by a wall meaning
R3 = T3). The obtained drift force is shown in the figures above where the right-hand side one is a blow-up of
the left-hand side one for wave periods in-between 0 and 2 s. It can be seen that the wall case is asymptotically
attained as the waterdepth h2 goes to zero. A series of peaks, with negative values when h2 is sufficiently small,
appear in the low period range: they are due to sloshing modes in-between the barge and the submarine cliff.
What was less expected is that, for wave periods beyond 4 or 5 s, the drift force becomes negative. This is due
to some kind of piston mode taking place in-between the barge and the depth transition.
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Finally we replace the abrupt transition by a ramp. We take the downwave depth h2 equal to h1/10 = 0.08 m.
The mid-height of the ramp is located at 2 m from the barge. Calculations are made for two slopes, 36 % and
18 %, that is ramps 2 m and 4 m long. Results are shown in the figure above, together with the vertical cliff
case, as obtained from the long wave approximation and as obtained by the exact model. In all cases the drift
force becomes negative as the wave period increases.
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