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At this year’s workshop we will present one of our newest initiatives, meshfree modelling of free
surface flow and fluid-structured interaction. The motivation for this work is to develop enhanced
methods and models for simulation of violent wave-structure interaction. The focus for this work is
on ocean energy devices, e.g. wind turbine foundations and wave energy devices, i.e. both fixed and
floating structures.

At the 22nd, 23rd and 24th International Workshop on Water Waves and Floating Bodies we
presented results using a higher-order finite difference (FD) based solution of the exact Laplace problem
for nonlinear water waves and their interaction with fixed structures, see Bingham et al. [2007], Engsig-
Karup et al. [2008] and Engsig-Karup and Bingham [2009]. The model is also described in Bingham and
Zhang [2007] and Engsig-Karup et al. [2009]. These publications establish the convergence, accuracy
and stability properties of the model and demonstrate the that the model is robust and efficient.

The goal of the current project is to develop an accurate meshfree model for violent fluid-structure
interaction and couple it with the existing finite difference model mentioned above. The higher order
finite difference model is used to accurately simulate smooth ocean waves over a large area of open sea
or in a coastal region. The meshfree model is used to simulate the, potentially violent, interactions
between ocean waves and fixed or floating structures and the flow in the near field of these structures.
The expected result is a robust, accurate, flexible and efficient solver for nonlinear wave-structure
interaction.

The meshfree model under development is based on an arbitrary Lagrangian-Eulerian (ALE) for-
mulation. The model solves the incompressible and inviscid Euler equations by means of a weakly
compressible flow approximation using isotropic and isothermal equations. The compressible Euler
equations are non-linear conservation laws which can develop steep gradients in the solution, i.e.
shocks, even from smooth initial conditions, see Toro [1999], hence careful attention must be payed
to the approximation of the spatial derivatives. To prevent spurious oscillations in the vicinity of
large gradients, the derivatives in are approximated by the moving least squares method (MLS), see
Zienkiewicz et al. [2006], in combination with a monotone flux calculation scheme. The monotone flux
calculation scheme approximates the solution to the Riemann problem between the particles. This
solution method gives a smooth and accurate pressure field which is especially important for wave-
structure interaction problems. robust and accurate calculation of the pressure field is still a research
topic in the meshfree community, see Ferrari et al. [2009]. The above described solution procedure
has a number of attractive features: It is consistent; the order of accuracy of the scheme is flexible;
the choice of the approximate Riemann solver gives some control over numerical diffusion; it is free of
undetermined parameters; and it is possible to impose boundary conditions directly. Finally, it is well
suited to a direct coupling with a finite difference method.

We present the ALE isotropic and isothermal Euler equations for a compressible fluid. The extensive
and conserved properties volume v, mass m and momentum mu are moved by a regular transport field
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u0 according to the conservation laws

dv

dt
− v∇ · u0 = 0, (1)

dm

dt
+ v∇ · (ρu − ρu0) = 0, (2)

dmu

dt
+ v∇ · (ρu ⊗ u + pI − ρu⊗ u0) = mg, (3)

which is the conservation laws of space, mass and momentum respectively. In the equations ρ is the
density, u is the flow velocity, p is the pressure, g is the gravitational acceleration and I is the identity
matrix of size d × d, where d = dim(Ω) is the dimension of the physical space.

The Eulerian equations are obtained by setting the transport velocity to zero u0 = 0 and the
Lagrangian equations are obtained by setting the transport field to the flow velocity u0 = u.

The extensive conserved properties are centered at a position x and moves with the kinematic
equation

dx

dt
= u0. (4)

The pressure is related to the density through the isothermal equation of state

p = c2
s(ρ − ρ0), (5)

where cs is the speed of sound, which is constant though out the fluid volume due to the isothermal
approximation, and ρ0 is the reference density.

The equations are solved in a spatial domain Ω with the boundary Γ, to which we apply physical
boundary conditions inflow, outflow, solid wall and free surface. The kinematic and dynamic boundary
conditions at the solid wall are

(u − uw) · n = 0 ∧
∂p

∂n
= ρn · g, x ∈ Γw, (6)

where uw is the velocity of the wall, n is the outward normal vector to the wall and n = x · n is the
coordinate of the normal direction. At the free surface the kinematic and dynamic boundary conditions
are

(u − ufs) · n = 0 ∧ p = patm ≈ 0, x ∈ Γfs. (7)

where ufs is the velocity at the free surface. The dynamic boundary condition states that the pressure
is equal the atmospheric pressure at the free surface.

The applied numerical method for approximation the divergence is very similar to the one presented
by Shu et al. [2005]. The main difference is that they use the radial basis functions (RBF) for the
meshfree derivative approximation, where we apply the MLS method to construct the basis function.
This is because the MLS method is believed to be more robust and has better consistency properties
that the RBF method as presented in Shu et al. [2005].

The physical domain is discretized in a point-based representation, where each point represents
a physical volume and mass. All the flow variables are collocated at these points. The numerical
approximation is localized such that each point only communicates with other points within a given
radius. The support of a point i is an index set Ni = {j ∈ [1, N ] | |xi − xj | < r}, where N is the
total number of points. The MLS derivative approximation of a function f(x) at the point xi has the
representation

∇f(xi) ≈
∑

j∈Ni

wi,jf(xj) (8)

where the summation is carried out over all the points in the support of point xi and the vectors with
weights wi,j are calculated using the MLS method.

To formulate the Riemann problem between the calculation points, it is practical to formulate the
ALE conservation laws (1) to (3) in the general form

d(vq)

dt
+ v∇ · (F(q) − q⊗ u0) = vb(q), (9)



where q is the vector of intensive conserved variables, F(q) is the flux tensor and b(q) is the source
vector. The approximate Riemann solver is applied to the divergence of the flux tensor ∇ · F(q). A
new divergence approximation is calculated using a flux approximation at the midpoint between the
points xi and xj . The weights for the new divergence approximation is

αi,j =
1

|wi,j|
wi,j ∧ βi,j = |wi,j|, (10)

where the first is a unit direction vector and the latter is a scaling factor. The direction vector is used
to calculate a the directional flux between at two calculation points

f(qi) = αi,j · F(qi) ∧ f(qj) = αi,j · F(qj). (11)

Now a flux scheme is applied to approximate the flux at the midpoint f(qi,qj) and the divergence
approximation is

∇ · F(qi) ≈ 2
∑

j∈Ni

βi,jf(qi,qj). (12)

The simplest choice of flux scheme is the the central difference scheme

f(qi,qj) =
1

2
(f(qi) + f(qj)), (13)

but it’s not a monotone scheme and it can create oscillations in the solution around steep gradients.
Another simple scheme is the Rusanov scheme

f =
1

2
(f(qi) + f(qj)) −

1

2
|Â|(qj − qi), (14)

where |Â| is a matrix with the maximum local wave speed on the diagonal. It is a monotone scheme
and hence it’s a possible choice when solving compressible Euler equations. Other, more accurate
possibilities, are the Roe or MUSCL schemes and many other schemes can be found in e.g. Toro [1999].

In the meshfree community, the still water hydrostatic test case is very important and perhaps
surprisingly difficult. In fact, very few meshfree methods can solve this seemingly trivial problem
satisfactorily. We consider a reference density of ρ0 = 1000kg/m3 and the gravitational acceleration is
g = −9.81m/s2. The simulation time is tmax = 10s. A fourth order Runge-Kutta method is used for
the time stepping with ∆t = C ∆x

cs
, C = 0.9 and ∆x set to the initial uniform point spacing. A first

order polynomial basis has been used in the MLS basis functions and the Rusanov flux has been used
for the approximate Riemann solver.

Figure 1a gives a qualitative impression that the hydrostatic pressure is calculated satisfactory and
1b show the relative maximum difference between the simulated density and the hydrostatic density.
It is seen that there is a linear relationship between the sound speed and the density difference. At
the maximum sound speed cs = 25m/s the relative difference from the hydrostatic density is less than
0.1%, which is satisfactory. We note however, that it may be necessary to use a higher sound speed to
simulate dynamic problems satisfactorily.

The method outlined above is a solid basis for further development, but is still in the intial stages of
developement. At the workshop we will show how the method performs on standing waves and shoaling
tests. We believe it is very important to demonstrate good performance on these very fundamental
validation cases, before the method is applied to more advanced simulations. One issue that needs
attention is the minimization of numerical diffusion from the approximate Riemann solver, because it
has a damping effect on the wave motion. We will also present cases with fluid structure interaction,
both for fixed and floating structures. The meshfree models are interesting, because they are attractive
for simulation of very violent and strongly Lagrangian flows. The meshfree nature is also suited for
violent fluid structure interaction. At the workshop we will demonstrate the quality of the meshfree
models on these types of flows.
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Figure 1: The hydrostatic validation case. (a): The contour levels show the calculated pressure at
t = 1s and the crosses show the calculation points. The sound speed is cs = 25m/s. (b): The
maximum relative difference of the density ρ from the hydrostatic density ρhs as a function of the
sound speed cs. The results are for Nz = 16, 32, 64, 128, 256 points in the vertical direction.
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