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1. Introduction 
 
Accurate prediction of added resistance on ships is 

one of crucial elements for power prediction, since the 
magnitude of added resistance can be 10~30 % of 
calm-water wave resistance. There are two major 
analytical approaches to estimate added resistance due 
to waves. One is a far-field method based on the 
momentum-conservation theory proposed by Maruo 
(1960), and the other approach is a near-field method 
by integrating pressures on the body surface. For many 
past years, the former approach has been widely 
applied due to its simplicity and efficiency, which has 
no need to compute hydrodynamic pressure on the 
complicated body surface. Recently, thanks to growing 
up of computer technology, the near-field method is 
being acclaimed as an alternative method. In the near-
field method, the wave Green function method has 
been applied in frequency domain. Very recently, 
Joncquez et al.(2008, 2009) solved the added resistance 
by using a ship motion program, AEGIR, and they 
compared the results between momentum-conservation 
approach and direct pressure integration. Furthermore, 
computational results based on Neumann-Kelvin and 
double-body linearization schemes were compared. 
In the present study, the two time-domain Rankine 

panel methods are applied for the computation of 
added resistance, and their results are compared. The 
computer programs to be considered are AEGIR and 
WISH. Details about the added-resistance computation 
by extending AEGIR can be found in the works of 
Joncquez et al.(2008, 2009). In the case of WISH 
developed by Kim et al.(2007), there are some 
differences of formulation and numerical methods, but 
there are many similarity such as the adoption of 
Rankine panel method, time-domain approach, and B-
spline basis function.  
The present study includes the comparison of the two 

linearization schemes: Neumann-Kelvin(NK) and 
double-body(DB) linearizations. Computed quantities 
of added resistance are validated for a few ships 
models, including Wigley hulls, Series 60 (CB=0.7) and 
S175 containership by comparing with experimental 
data. Furthermore, the components of added resistance 
are observed for each integral term, and the 

contributions of radiation and diffraction components 
are also compared. 
 
2. Theoretical background 
 
2.1 Boundary Value Problem 
The adoption of potential theory is a typical approach 

to tackle the ship motion problem. When a ship, 
advancing a constant speed U, is under wave excitation, 
the boundary value problem for velocity potential ( )φ  
can be formulated as follows: 
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. In addition, ζ  and g  are 

wave elevation and gravity constant, respectively. The 
boundary value problem can be linearized by 
decomposing the total velocity potential as follows: 
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Φ  indicates the basis potential, and the subscript I and 
d indicates the incident and disturbed component for 
potential and elevation. The linearized boundary 
conditions take the following forms: 
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where, im  is m-term which contains an interaction 
term between the steady and unsteady solutions. The 
Eqs. (7)~(9) are the boundary conditions for double-
body linearization when Φ  takes the double-body 
flow potential. By substituting Φ  by zero in Eqs. 
(7)~(9), the boundary value problem of Neumann-
Kelvin linearization can be provided. 
The ship motion can be obtained by solving an 

equation of motion as follow:  
 
[ ]{ } [ ]{ } { } { }. . . .F K H DM C F Fξ ξ+ = +    (10) 

 
[ ]M is the mass matrix of ship. { }. .F KF , and { }. .H DF  
are Froude-Krylov and hydrodynamic forces, 
respectively. Details of numerical implementations 
about the boundary value problem and the equation of 
motion are found in Kim et al.(2007). 
 
2.2 Formulation of Added Resistance 
By using Bernoulli’s equation and Taylor’s expansion, 

the second-order pressure can be evaluated, and the 
second-order force is provided by integrating the 
second-order pressure on the body surface. The added 
resistance can be obtained by averaging the second-
order force signal as follow:  
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In order to obtain the added resistance, it is no need to 

solve the second-order boundary value problem 
because a mean value of the second-order velocity 

potential is zero. Added resistance can be obtained also 
by using a momentum approach. The details on the 
momentum approach can be found in the work of 
Joncquez(2009). 
 
3. Analysis Results 
 
Two Wigley hull models, Series 60(CB =0.7) and 

S175 containership are considered for numerical 
analysis. The principal dimension of the test models are 
appeared in Table 1, and panel models are shown in Fig. 
1. 
 
Table 1 Principal dimension of the test models(m) 

Model Wigley I Wigley III Series 60 S175 

L 3.0 3.0 100.0 175.0 

B/L 0.1 0.1 0.143 0.145 

D/L 0.0625 0.0625 0.057 0.054 

C B 0.560 0.462 0.7 0.561 

 

 
(a) Wigley model      (b) Series 60 (CB=0.7) hull 

Fig. 1 Hydrodynamic panel models of the test models 
 
Fig. 2 shows disturbed wave patterns around of Series 

60. Nakos(1990) compared the steady wave elevations 
computed by the Neumann-Kelvin and double-body 
linearizations with the existing experiment data, and he 
pointed out that major differences are found in near 
bow and stern regions. In the present study, the same 
conclusion is found.  
Linear and the second-order forces on Wigley I model 

with Fn=0.2 are shown in Fig. 3. The second-order 
force contains only the quadratic components of linear 
solutions, as appeared in Eq. (11). The second-order 
force oscillates two times faster than the linear force, as 
expected. Added resistance is the mean value of this 
second-order force. 
Figs. 4 and 5 show added resistances of Wigley hull I 

model at Fn=0.2 and 0.3 with respect to the wave 
length. At Fn=0.2, there are no big difference between 
the results of the Neumann-Kelvin and double-body 
linearizations, and the computational results show 
favorable agreements with experimental data. At 
Fn=0.3, the magnitude of added resistance between the 
two linearization schemes are similar, however the 
resonance frequency of the Neumann-Kelvin 
linearization is closer to experimental data than the 
double-body linearization. In fact, the double-body 
linearization is a slow-ship approach, and this means 



that the accuracy of computational results by the 
double-body linearization can be poorer as ship goes 
faster. Therefore, it is reasonable that the results of the 
double-body linearization show good correspondence 
at Fn=0.2, while a little differences are found at Fn=0.3 
as shown in Figs 4 and 5. At high Froude numbers, The 
Neumann-Kelvin linearization is recommended rather 
than the double-body linearization. 
 

 
(a) / 34.43T g L =          (b) / 40.69T g L =  

Fig. 2 Added Resistance of Series 60 hull: Fn=0.222, 
wave heading angle = 180 deg, λ/L=1.136 

 

 
(a) Neumann-Kelvin       (b) Double-body 

Fig. 3 Time-histories of surge force on Wigley I hull: 
Fn=0.2, wave heading angle = 180 deg, λ/L=1.15 

 

 
(a) Neumann-Kelvin       (b) Double-body 

Fig. 4 Added resistance of Wigley I hull: Fn = 0.2, 
wave heading angle = 180 deg 

 

 
(a) Neumann-Kelvin       (b) Double-body 

Fig. 5 Added resistance of Wigley I hull: Fn = 0.3, 
wave heading angle = 180 deg 

 
The added resistance of Series 60(CB=0.7) with 

Fn=0.222 is shown in Fig. 6. The results of the double-
body approach show better agreement with the 
experimental data than those of the Neumann-Kelvin 
linearization. The fundamental assumption of the 
Neumann-Kelvin linearization comes from the thin-
ship theory that beam-to-length ratio is small, therefore 
in case of Series 60 which has larger beam-to-length 
than Wigley hull model, the double-body linearization 
seems more reasonable rather than the Neumann-
Kelvin linearization. 
In the case of Wigley I model, the results of 

Joncquez(2009) shows better agreement with measured 
data at Fn=0.3. On the other hand, in the case of Series 
60, the results of WISH show better prediction. In 
order to investigate the reason of different tendencies 
between the results of WISH and AEGIR, a 
comparative study on the linear solutions should be 
done more thoroughly. 
The added resistance of S175 containership is shown 

in Fig. 7. At high Froude number, discrepancy between 
the results of two linearization schemes is large. The 
results of double-body linearization show better 
correspondences with the experimental data than the 
results of the Neumann-Kelvin linearization. 
 

 
(a) Neumann-Kelvin       (b) Double-body 

Fig. 6 Added resistance of Series 60 hull: 
wave heading angle = 180 deg 

 

 
(a) Fn=0.15             (b) Fn=0.25 

Fig. 7 Added resistance of S157 containership: wave 
heading angle = 180 deg 

 
Global agreements between the computational results 

and measured data are described in Table 1. The 
agreement is presented in three levels: very good (○), 
good(△) and bad(X). At low Froude number, both 
linearization schemes show good correspondences with 
experimental data. Overall, the Neumann-Kelvin 



linearization shows better agreement than the double-
body linearization at high Froude number. In the cases 
of Wigley hulls considered as thin ships, the Neumann-
Kelvin linearization shows better prediction than the 
double-body linearization, while in the case of Series 
60 and S175 containership, fatter than Wigley hulls, the 
double-body linearization shows better solutions than 
the Neumann-Kelvin linearization. All of these 
tendencies are natural according to the fundamental 
assumptions of the two linearization schemes.  
 
Table 2 Agreement between computational results and 
experimental data (○: very good, △: good, X:bad) 

Wigley I 
Wigley 

III 
Series 60 S175 

Fn 

NK DB NK DB NK DB NK DB

0.15 - - - - - - ○ ○

0.2 ○ ○ △ △ △ ○ △ ○

0.25 - - - - - - X △

0.3 △ X △ X - - X X
 
The components of added resistance on S175 

containership are shown in Fig. 8. (I) is waterline 
integral term, and (II) to (V) are each integral term as 
appeared in Eq. (11), (VI) is last two integral terms. It 
is easily found that the most dominant component of 
the added resistance is (I). (III) or (V) also takes 
significant amount. It means that the radiation 
component is important when the wave length is 
comparable with ship length. These are clearly 
appeared in Fig. 8-(b). The radiation component is 
much larger than the diffraction component in near 
resonance-wave length.  
 

 
(a) Integral term   (b) Radiation and diffraction 

Fig. 8 Components of added resistance on S175 
containership: Fn=0.2, wave heading angle = 180 deg 
 
In short or long waves away from the resonance-wave 

length, the diffraction component is larger than the 
radiation component. This trend was already well 
known, and it is appeared in the range of λ/L<0.8.  
 
 
 

4. Conclusions 
 
The added resistance of ship is handled with a B-

spline-based Rankine panel method in time domain. 
Added resistance values computed by using the both 
Neumann-Kelvin and double-body linearizations are 
compared each other as well as with experimental data 
for Wigley hulls, Series 60 hull, and S175 
containership, showing reasonable agreement. 
Computational results by using the Neumann-Kelvin 
linearization show better correspondence with 
experimental data at high Froude numbers and for thin 
ships with small beam-to-length ratios, while those of 
the double-body linearization seem to provide better 
agreement at low Froude numbers and for fat 
displacement ships. Therefore proper linearization 
scheme should be applied, depending on ship speed 
and hull form. 
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