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1. Introduction
The added resistance in waves is crucial in predicting the speed loss of a ship navigating in actual seas. Thus a large

number of work has been made so far. However, details in the hydrodynamic relation between the added resistance and

the wave amplitude function seem to be unclear, because the added resistance is an integrated quantity of the pressure

and comparisons have been made between this integrated value and the total increase in the ship resistance in waves

measured by a dynamometer.

Ohkusu (1980) proposed a method for measuring ship-generated unsteady waves and then evaluating the wave am-

plitude function and the added resistance. This analysis method enables a comparison at the level of wave profile and

thus may provide us with deeper hydrodynamic understanding. However, accurate measurement of unsteady waves is

not so easy and subsequent analyses for the Fourier transform of wave elevation and for the added resistance have not

been made in a convincing manner.

In the present study, in addition to direct measurement of the added resistance by a dynamometer, ship-generated

unsteady waves are measured. Numerical computations corresponding to the experiment are performed with enhanced

unified theory (EUT) developed by Kashiwagi (1995). Then a comparison is made for the wave profile along a longitudinal

line parallel to the ship’s advancing direction. Not only measured waves but also computed ones are used to validate the

wave analysis method for predicting the added resistance and to study the effects of local wave and lateral distance for

the wave measurement. Discussion is also made on which part of the wave is crucial and hence where attention should

be paid in predicting the added resistance from the wave-pattern analysis.

2. Unsteady Wave Analysis and Added Resistance
Let us consider a ship advancing at constant forward speed U into a regular wave of amplitude A, circular frequency

ω0. The depth of water is assumed infinite and thus the wavenumber of incident wave is given by k0 = ω2
0/g, with g

the gravitational acceleration. For brevity, only the head wave is considered, and the analysis is made with a right-hand

Cartesian coordinate system O-xyz, with the origin placed at the center of a ship and on the undisturbed free surface,

which translates with the same constant speed as that of the ship along the positive x-axis. The z-axis is positive

downward. Unsteady ship responses and ambient unsteady flow of fluid are assumed to be linear and periodical with

circular frequency of encounter ω = ω0 + k0U .

Assuming the flow inviscid with irrotational motion, the velocity potential is introduced and written in the form

Φ(x, y, z, t) = −U x + Re
[{

ϕ0(x, y, z) + ϕ(x, y, z)
}

eiωt
]
, (1)

where ϕ0 denotes the incident-wave potential and ϕ the disturbance potential. By linear assumption, the disturbance

potential is decomposed in the form

ϕ(x, y, z) =
gA

iω0

{
ϕ7(x, y, z) − ωω0

g

∑
j=1,3,5

Xj

A
ϕj(x, y, z)

}
. (2)

Here ϕ7 denotes the scattering potential and ϕj the radiation potential due to the j-th mode of motion (j = 1, 3, 5 for

surge, heave, and pitch, respectively) with Xj its complex amplitude.

The elevation of ship-generated wave in the linear theory can be computed by

ζW (x, y) =
1

g

(
iω − U

∂

∂x

)
ϕ(x, y, 0) (3)

and each component in the disturbance potential is evaluated in the present paper by the far-field representation in the

slender-ship theory as follows:

ϕj(x, y, 0) =

∫
L

Qj(ξ) G(x − ξ, y, 0) dξ (j = 1, 3, 5, 7), (4)



where Qj(x) denotes the strength of sources distributed along the x-axis and G(x, y, z) the Green function, equivalent

to the velocity potential due to an oscillating and translating source with unit strength. By substituting (2) and (4) into

(3) and expressing ζW (x, y) as Aζ(x, y), the wave elevation normalized with incident-wave amplitude can be computed

from

ζ(x, y) =− 1

2π2

∫ ∞

−∞
dk

∫ ∞

0

C̃(k) e−ikx−|y|
√

n2+k2 n2 dn

(n2 + κ2)
√

n2 + k2

− 1

2π

[∫ k2

k1

+

∫ k4

k3

]
C̃(k)

κ√
k2 − κ2

e−ikx−|y|
√

k2−κ2
dk

+
i

2π

[
−

∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
C̃(k)

κ√
κ2 − k2

e−ikx−iϵk|y|
√

κ2−k2
dk, (5)

where
κ =

1

g

(
ω + kU

)2
= K + 2kτ +

k2

K0
,

K =
ω2

g
, τ =

U ω

g
, K0 =

g

U2
, ϵk = sgn(ω + kU ),

 (6)

k1

k2

}
= − K0

2

(
1 + 2τ ±

√
1 + 4τ

)
,

k3

k4

}
=

K0

2

(
1 − 2τ ∓

√
1 − 4τ

)
, (7)

C̃(k) =
(ω + kU )

ω0
C(k), C(k) = C7(k) − ωω0

g

∑
j=1,3,5

Xj

A
Cj(k), (8)

Cj(k) =

∫
L

Qj(ξ) eikξ dξ. (9)

Here Cj(k) is defined as the Kochin function of each component in the disturbance potential and C(k) in (8) is the total

Kochin function for the case of all modes of motion free to oscillate in a wave.

The first and second lines on the right-hand side of (5) represent local waves. Neglecting these, (5) can be expressed

in the form

ζ(x, y) ≃ i

2π

∫ ∞

−∞
u
(
κ2 − k2

)
C(k)

√
κ

k0

κ√
κ2 − k2

e−ikx−iϵk|y|
√

κ2−k2
dk, (10)

where u(κ2 − k2) is the unit step function, equal to 1 for κ2 > k2 and zero otherwise. It should also be noted that

ϵk = sgn(ω + kU ) = −1 for −∞ < k < k1 and ϵk = 1 for k2 < k < ∞.

Let us consider the Fourier transform of ζ(x, y) with respect to x, defined by the following integral:

ζ∗(ℓ, y) =

∫ ∞

−∞
ζ(x, y) eiℓx dx. (11)

Mathematically, in terms of an integral representation of Dirac’s delta function

1

2π

∫ ∞

−∞
ei(ℓ−k)x dx = δ(ℓ − k), (12)

the following relation can readily be obtained:

ζ∗(k, y) = i C(k)

√
κ

k0

κ√
κ2 − k2

e−iϵk|y|
√

κ2−k2
. (13)

Namely the Fourier transform of the wave elevation is directly connected with the Kochin function as in (13).

According to Maruo’s theory for the added resistance, the added resistance in head waves can be computed in terms

of the Kochin function as follows:

RAW

ρgA2
=

1

4πk0

[
−

∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

] ∣∣C(k)
∣∣2 κ√

κ2 − k2

(
k + k0

)
dk

=
1

4πk0

∫ ∞

−∞
ϵk u

(
κ2 − k2

) ∣∣C(k)
∣∣2 κ√

κ2 − k2

(
k + k0

)
dk. (14)

Thus, substituting (13) in (14) provides a formula for computing the added resistance with the Fourier transform of

ship-generated unsteady waves, in the form

RAW

ρgA2
=

1

4π

[
−

∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

] ∣∣ ζ∗(k, y)
∣∣2 √

κ2 − k2

κ2

(
k + k0

)
dk. (15)



3. Numerical Computations and Experiment
Experiments were carried out in head waves, measuring the wave-induced motions (surge, heave, and pitch), the added

resistance by a dynamometer, and also ship-generated unsteady waves using six wave probes of capacitance type which

are positioned with almost equal intervals over one period of encounter. The spatial distribution of cosine and sine

components in the unsteady wave oscillating with circular frequency of encounter ω were obtained by the least-squares

method using the data measured with six wave probes along a longitudinal line parallel to the x-axis (at constant y).

The ship model used in the experiments and also numerical computations is a modified Wigley model with wider

breadth, expressed mathematically as

η =
(
1 − ζ2

)(
1 − ξ2

)(
1 + 0.6ξ2 + ξ4

)
+ ζ2

(
1 − ζ8

)(
1 − ξ2

)4

ξ =
2x

L
, η =

2y

B
, ζ =

z

d

 (16)

where the real dimensions are L = 2.5 m, B = 0.5 m, d = 0.175 m (which is called standard draft). The gyrational

radius in pitch and the center of gravity were set to κyy/L = 0.236 and OG/d = 0.177 (below the free surface).

The lateral distance of a longitudinal line used for the wave measurement from the centerline of a ship model (i.e.

x-axis) was set equal to y = B/2 + 0.1m = 0.35 m. The Froude number was Fn = 0.2 in all measurements.

Numerical computations corresponding to the experiments were performed by means of the enhanced unified theory

(EUT) developed by Kashiwagi (1995). This theory can compute the surge-related quantities with 3-D and forward-

speed effects taken into account and also the effect of wave diffraction near the bow by retaining the contribution of the

x-component of the normal vector in the body boundary condition. In EUT, the radiation and diffraction problems are

solved, with 3-D and forward-speed effects incorporated through a homogeneous component in the inner solution, and

those effects are reflected through the matching procedure into the source distribution Qj(x) in the outer solution and

then the Kochin function to be computed from (8) and (9). Of course the complex amplitude Xj was determined by

solving the equations of ship motion.

4. Results and Discussion
Figure 1 shows a comparison of the added resistance, in which open circles show the results measured by a dynamometer

and the solid line shows computed results by EUT in terms of the Kochin function and Maruo’s formula (14). Closed

triangles indicate the results obtained from the wave-pattern analysis (15), using the measured data over the range of

3 > x/(L/2) > −5 and no correction is made for the downstream wave profile. One example of the measured wave

elevation is shown in Fig. 2 which is for λ/L = 1.0, and the cosine and sine components correspond to the coefficients in

the Fourier-series expansion and thus they can be expressed as ζ(x, y) = ζC(x, y) − iζS(x, y) in complex notation.

In order to compare this wave profile with computed one and to understand effects of the local wave and lateral

distance in the wave measurement and which part of the wave is dominant in the prediction of the added resistance,

numerical computations of the wave elevation and

added resistance were performed using EUT. It

should be noted that the position of the source

distribution in EUT is, as shown by (4) or (9),

just on the free surface (zs = 0) and along the

x-axis (ys = 0). In this case, as shown in Fig. 3,

the shorter-wavelength component becomes con-

spicuous, which looks much different from the

measured one. However, it is confirmed that

the added resistance computed from the Fourier

transform of this computed wave profile is in vir-

tually perfect agreement with the solid line shown

in Fig. 1. (It is noteworthy that the wave measure-

ment has been done only with six wave probes,

which may not be enough for resolving shorter

waves.)

Anyhow, to suppress the amplitude of shorter-

wave component, the depth-wise position of the

source distribution is slightly shifted with zs =

0.004 d ( 0.4% of draft). This slight shift af-

fects greatly the result of the wave profile, re-

sembling the measured one. However, the result-

ing added resistance computed from (15) becomes

much smaller than the value by the original EUT.
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Modifed Wigley Model Fn=0.20, β=180 deg

Fig. 1 Comparison of the added resistance on modi-
fied Wigley model in head waves at Fn = 0.2.

Thus the entire wave profile is 1.75 times magnified and shown as Fig. 4. With this magnification in the amplitude, the

added resistance becomes almost the same as that to be computed from Fig. 3.
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Fig. 2 Unsteady wave generated by modified Wigley model, measured by
wave probes positioned at y/(B/2) = 1.4, for head wave of λ/L =
1.0 at Fn = 0.2.
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Fig. 3 Unsteady wave generated by modified Wigley model, computed
with EUT at y/(B/2) = 1.4, for head wave of λ/L = 1.0 and
Fn = 0.2. The source distribution is placed at zs = 0.0.
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Fig. 4 Unsteady wave generated by modified Wigley model, computed
with EUT at y/(B/2) = 1.4, for head wave of λ/L = 1.0 and
Fn = 0.2. The source distribution is placed at zs/d = 0.004 and
the amplitude is 1.75 times magnified.
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Fig. 5 Unsteady wave generated by modified Wigley model, computed
with EUT at y/(B/2) = 5.0 ( y/(L/2) = 1.0 ), for head wave of
λ/L = 1.0 and Fn = 0.2. The source distribution is placed at
zs/d = 0.004 and the amplitude is 1.75 times magnified.

By comparison between Fig. 2 (mea-

surement) and Fig. 4 (computation),

prominent discrepancy can be seen in

the range of 1 > x/(L/2) > 0. In

EUT, the far-field disturbance by a ship

is represented by the source distribution

along the x-axis, whereas in the experi-

ment, the half breadth of ship model is

B/2 = 0.25 m and thus the so-called dis-

placement effect becomes obvious (the

wave pattern tends to be shifted to

transversely outward direction).

Through the present numerical

study on the analysis of wave profile

and resultant added resistance, follow-

ing facts have been found:

[1] The amplitude (profile) of the

wave generated near the bow and prop-

agating ahead is dominant in the added

resistance. In the examples shown as

Fig. 2 – Fig. 4, the waves at |x/(L/2) | <

1 are especially important and little

influence exists from the downstream

waves. This implies that the predic-

tion of the added resistance from the

measured wave elevation can be success-

fully made without any correction for

the downstream waves (which actually

cannot be measured due to reflection

from side walls of a towing tank).

[2] The effect of local wave is very

small and negligible in the added re-

sistance. In fact, the added resistance

was virtually the same irrespective of

whether the local wave components in

(5) are included in the numerical com-

putation by EUT.

[3] The effect of lateral position in the

wave measurement is also very small.

In fact, the wave profile was computed

also at y = L/2 = 1.25 m (the result of

which is shown as Fig. 5) and the added

resistance computed from this wave pro-

file was virtually the same as that com-

puted from the wave profile at y = 0.35

m shown in Fig. 4.

From the consideration above, rela-

tions between the added resistance and

the unsteady wave analysis were elu-

cidated. Consequently it can be un-

derstood that careful attention must be

paid in measuring the waves (including

short-wave component) generated from

the bow part of a ship, because slight er-

ror in the wave amplitude may result in

large difference in the added resistance.
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