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SUMMARY
The flow generated by a wedge shaped hull in steady planing motion is simulated numerically by a 2D+t potential flow
model and by a 3D RANS solver. A comparison between the two solutions is established in order to understand the
role played by three-dimensional effects, neglected within the slender body assumption. The analysis is focused on the
evaluation of the free surface shape and of the pressure field acting on the hull surface. It is shown that a good agreement
is achieved in terms of the free surface profile, provided a correction is applied to the 2D+t solution to account for the rise
up of the water in front of the hull. The comparison in terms of pressure distribution reveals important three-dimensional
effects in the very fore part of the hull, in the region about the separation point and at the transom.

1. INTRODUCTION

The motivation for the study stems from the fact that,
differently from displacement ships where computational
methods have reached a high level of confidence, not so much
has been done for planing crafts. In this case the develop-
ment of numerical tools has been hampered by the much
stronger role played by nonlinear effects and by the small-
ness of the scales that have to be resolved in order to achieve
an accurate prediction of the pressure field, particularly in
the fore region. Because of such limitations, most of the
theoretical or numerical studies have been developed under
the slender body assumption (Tulin, 1956; Savander, 1997;
Zhao, Faltinsen and Haslum, 1997; among others) and only
few attempts were made to face the full three-dimensional
problem (Lai and Troesch, 1995; 1996). By exploiting the
slenderness of the body, the flow generated by a planing hull
in steady motion on a transversal plane in an earth fixed
frame of reference can be approximated by that induced
by the water entry of a two-dimensional body. This ap-
proach, which is known as 2D+t, has been used for instance
by Battistin and Iafrati (2003a) to model the flow gener-
ated by hulls in steady motion whereas Sun and Faltinsen
(2007) initiated the extention of the approach to seakeep-
ing problems. Generally, the shape of the two-dimensional
impacting body changes in time as it represents the hull
section at different longitudinal positions. This is not the
case for the present paper as the hull is wedge shaped.

Despite the awareness of the limits of the slender body
assumption, no specific studies have been done so far to
achieve a quantitative estimate of the neglected three-dimensional
effects. Although still rather expensive, RANS flow solvers
have reached a good level of development and are now ca-
pable of providing accurate solutions, provided the grid res-
olution is fine enough to capture the sharp gradients taking
place in the fore part of the hull especially.

Starting from the above considerations, a comparison
is presented here between the 2D+t potential flow solution
and the RANS results. As a test case, the flow generated
by a wedge shaped planing hull moving steadily is consid-
ered. The cross section of the hull has a 20 degrees deadrise
angle whereas the trim angle is fixed at 4 a 6 degrees. Such
conditions have been chosen as experimental data ara avail-
able (Kaprian and Boyd, 1955). The 2D+t model uses a

fully nonlinear, potential flow solver to derive the solution of
the Laplace equation for the velocity potential. Simulations
are carried out in the infinite Froude number limit, which
is to say that the hydrostatic contribution to the pressure
has been neglected in comparison to nonlinear terms. This
hypothesis avoids that the jet, detaching from the chine,
plunges onto the free surface, leading to a topology change
that would be hardly managed by the boundary element
model.

Results are presented in terms of free surface profiles at
different longitudinal positions and pressure distributions
on the hull surface. Due to limitation in space, results are
here presented for the 6 degree cases only. More results will
be presented at the workshop. At the workshop, compar-
isons with other numerical results available in literature and
experimental measurements will be presented as well.

2. 2D + t POTENTIAL FLOW MODEL

Without going into a detailed formulation of the model,
which can be found in Zhao, Faltinsen and Haslum (1997)
or in Battistin and Iafrati (2003a), for the purpose of the
present paper it is enough to recall that the steady three-
dimensional flow is transformed in the unsteady two-dimensional
water entry flow taking place on the y, z plane located at
x = 0 (Fig. 1,2):
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Here UH is the horizontal speed of the hull and n is the
normal to the two-dimensional hull section SB , which is ob-
tained by re-normalizing the projection of the three-dimensional
normal ν onto the x = 0 plane. Correspondingly, in the
two-dimensional problem u is the projection of the three-



dimensional velocity vector onto the same plane. In the
above equations ∇ = (∂y, ∂z) is the two-dimensional gradi-
ent operator, whereas F (y, z, t) is the equation of the free
surface SS .

The initial boundary value problem in the two-dimen-
sional plane is solved through a mixed Eulerian-Lagrangian
technique (Battistin and Iafrati, 2003b) and the correspond-
ing pressure field along the wetted portion of the contour is
evaluated by the unsteady Bernoulli equation

p = −
(

ϕt +
|∇ϕ|2

2

)
. (7)

where ρ0U
2
H is the scaling factor, ρ0 being the fluid density.

The solution of the boundary value problem is achieved
through a boundary element approach. The fluid boundary
is discretized with straight line panels, and the velocity po-
tential and its normal derivative are assumed to be piecewise
constant. The system is integrated in time making use of
a second-order Runge-Kutta scheme. For stability reasons,
the time step is chosen so that the maximum displacement
of the centroid is smaller than one fourth of the correspond-
ing panel length. The geometry of the impacting body is
given through a set of points, which are interpolated with
cubic splines.

Although a more detailed description of the numerical
model can be found in Iafrati and Battistin (2003), it is
worth spending few words describing the method adopted
to describe some peculiarities in the flow features, which are
the thin jet layer and the flow separation taking place in the
chine wetted region. Even two-dimensional simulations are
rather challenging because of the thin jet layer developing
along the body contour. Despite the rather low pressure
inside the jet, the description of the spray is important in
order to obtain a correct estimate of the wetted surface and
of the flow separation point. A hybrid FEM-BEM simplified
model has been proposed in Battistin and Iafrati (2004). In
this simplified model the jet is subdivided into small con-
trol volumes and within each volume the velocity potential
is written in the form of an harmonic Taylor series, up to the
second order. The coefficients of the expansion are derived
together with the solution of the boundary value problem.
An intermediate region is introduced to assure a smooth
transition from the bulk of the fluid to the jet region. More
details concerning with the parameters governing the mod-
elled part of the jet are given in Iafrati and Battistin (2003)
and Battistin and Iafrati (2004).

The occurrence of flow separation from the body con-
tour during the impact is included in the present model, at
least for those cases in which the separation point can be
assigned a priori, as it is for the present geometry. It is as-
sumed that, when the jet tip reaches the separation point,
the liquid particles which were moving along the body con-
tour, continue moving along the tangent to the body at
the separation point. Although very close to the separation
point a Neumann boundary condition is enforced on the free
surface to guarantee the tangency to the body contour, fur-
ther away on the separated part the standard kinematic and
dynamic boundary conditions hold, thus providing a Dirich-
let boundary condition for the velocity potential. Once the
fluid leaves the body, the jet model is simplified further, by

reducing the series expansion to the first order. Although
this assumption does not allow an exact mass conservation
in the jet region, it greatly improves the stability of the
numerical algorithm.
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Figure 1: Sketch of the planing hull and of the notation
employed
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Figure 2: Sketch of the flow in the transversal plane

3. RANS FLOW SOLVER

The three-dimensional RANS solutions are obtained by us-
ing the method described in Di Mascio, Broglia and Muscari
(2007). The method solves the unsteady Reynolds Averaged
Navier-Stokes equations for an incompressible fluid, which
are written in non-dimensional integral form with respect
to a moving control volume V as∮

S(V)

U · ndS = 0

∂

∂t

∫
V

UdV +
∮

S(V)

(Fc −Fd) · ndS = 0
(8)

where S(V) is the boundary of the control volume, and n
the outward unit normal. In equation (8), Fc and Fd repre-
sent Eulerian (advection and pressure) and diffusive fluxes,
respectively:

Fc = pI + (U − V ) U

Fd =
(

1
Rn

+ νt

) [
gradU + (gradU)T

] (9)

where V is the local velocity of the boundary of the control
volume, Rn = U∞L/ν the Reynolds number, ν the kine-
matic viscosity, whereas νt denotes the non–dimensional
turbulent viscosity. The latter is calculated by the one–
equation model introduced by Spalart and Allmaras (1994).
In the above equations, ui is the i–th Cartesian component
of the velocity vector, p is a variable related to the pres-
sure P and the acceleration of gravity g (parallel to the
vertical axis z, downward oriented) by p = P + z/Fn2,



Fn = U∞/
√

gL being the Froude number. The system
of equations (8) is solved under appropriate conditions at
physical and computational boundaries. On solid walls, the
relative velocity is set to zero whereas pressure is not re-
quired. At the inflow boundary of the computational do-
main, velocity is set to the undisturbed flow value and the
pressure is extrapolated from inside. The pressure is set to
zero at the outflow boundary, where velocity components
are extrapolated from inside.

At the free surface, location of which is one of the un-
knowns of the problem, the dynamic boundary condition
requires continuity of stresses. In the present paper the
presence of air is neglected so that the continuity of stresses
at the interface read

p = τijninj + z
Fn2 + κ

We2

τijnit
1
j = 0 (10)

τijnit
2
j = 0

where τij is the stress tensor, κ is the average curvature,
We =

√
ρU2

∞L/σ is the Weber number, σ being the surface
tension coefficient. In the above equation n, t1 and t2 are
the surface normal and two tangential unit vectors, respec-
tively. The method is second order accurate in space and
time and uses a single phase Level-Set technique to describe
the free surface dynamics.
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Figure 4: Limits of the 2D + t model: z∗ and x∗ locate
the intersection point between the free surface and the
keel line whereas z0 is the initial depth of the apex in
the 2D + t simulations.

4. NUMERICAL RESULTS

Numerical simulations are carried out for a wedge shaped
planing hull, 20 degrees deadrise angle, planing with a con-
stant trim angle of 4 and 6 degrees (only results for the
6 degrees case are shown here). The hull beam B is as-
sumed as length scale. The hull, which is 4B long, is ro-
tated about the quarter of length yielding to a geometrical
wetted length LK = 3B. Whereas potential flow simula-
tions are carried out in the infinite Froude number limit,
RANS simulations are performed at a beam Froude number
FrB = U/

√
gB = 12.25. Before establishing the compari-

son, it is important to remark two limitations in the 2D + t
solution which have to properly accounter for. Due to the
lack of three-dimensional effects at the bow, the 2D + t so-
lution cannot predict the rise up of the water level in the
very fore part of the hull. Furthermore, in the 2D + t ap-
proach, the wedge is slightly submerged at the beginning of
the simulation.
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Figure 5: Comparisons between the free surface shapes
provided by the three-dimensional RANS (solid) and
the 2D + t model (dash). For the latter, profiles ob-
tained after correction are also displayed (dash-dot).
From top to bottom, results refer to the 6 degrees trim
angle at x = 0, 0.4, 0.8, 1.8.

Although the initial submergence can be reduced, it can-
not be completely avoided. In order to account for the above
effects and thus to establish a fairer comparison, the three-
dimensional solution at the longitudinal position x is com-
pared with the 2D+t solution obtained at the same position
and at a position x̃ = x+(x0−x∗) (see Fig. 3). For the con-
ditions adopted in the present calculations, x∗ ' −0.0588
for the 4 and 6 degrees trim angle. Of course, when the
horizontal shift is applied, a vertical displacement is also in-
troduced in order to the have the body located at the same



vertical position of the three-dimensional solution.
In Figs. 5 and 6, comparisons between the 2D + t and

the RANS solutions are established in terms of free surface
shape and pressure distribution, respectively.
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Figure 6: Comparisons between the pressure distribu-
tion of the body surface for the 6 degrees trim angle.
From top to bottom, results refer to the transversal
planes located at x = 0, 0.4, 0.8, 1.8.

The comparison indicates that the 2D + t and three-
dimensional results are in a rather good agreement in terms
of the free surface dynamics, provided the correction ac-
counting for the rise up of the water for the initial body
depth is applied. It is worth noticing that, despite the lack
of gravity in the 2D + t simulations, the agreement remains
very satisfactory even in the chine wetted phase. Compar-

isons (not shown here) of free surface profiles further down-
stream show that, although the gravity is starting to act on
the thinnest part of the jet, the solution up to the jet root
is well captured by the 2D + t simulation, in spite of the
zero gravity assumption.

Differently from the free surface shape, the comparison
in terms of pressure distribution is satisfactory only in the
chine un-wetted stage, which is up to x = 0.6 for 6 degrees
case. Owing to the lack of the longitudinal derivative, the
2D+t solution exhibits a much sharper variation in the pres-
sure field about the region where the flow separates from the
bottom of the hull. Further downstream, the agreement be-
comes again satisfactory (Fig. 6, x=1.8). Approaching the
transom, the three-dimensional solution exhibit a smooth
reduction of the pressure which is not predicted by the 2D+t
solution.
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