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1. Natural sloshing modes. Analytically-oriented multimodal methods exist when the exact analytical 
natural sloshing modes (a) are expandable over the mean free surface, (b) exactly satisfy the Laplace 
equation and the zero-Neumann condition on the wetted walls, and (c) admit higher-order derivatives on 
the mean free surface. Construction of approximate natural modes for a two-dimensional circular tank is 
discussed by Faltinsen & Timokha (2009). They showed, inspired by Barkowiak et al.’s (1985) 
experiments, that the velocity potential for a horizontal dipole in infinite fluid, i.e. 

 ( )2 2
1( , ) 2 / ( )W y z y y z a= + - ,  (1) 

approximates the first antisymmetric natural mode 1j . Here the origin of the Oyz -plane lies in the circle 

centre, z  is directed upwards, and a  is the vertical dipole position. The dipole-type solution satisfies the 
Laplace equation, the liquid volume conservation condition, and, if 0a R=  with 0R  as the radius, the 

Neumann boundary condition on the wetted walls for any tank fillings. An approximate natural 
frequency was obtained by using the Rayleigh quotient variational formulation. When the depth-to-tank 
radius ratio 0/ 1h h R= £ , the solution (1) gives only 1% larger numerical values than those by McIver 

(1989); moreover, a  is then close to 0R . For larger depths, 1 2h< < , the dipole-type solution leads to a 

larger difference from McIver's results. For instance, the depth 1.8h =  leads to about 5% error with 

01.227a R= . 

Three questions to be answered are: (i) What 
could be a generalization of the dipole-type 
approximation for the higher natural sloshing 
modes? (ii) How to make the dipole-type 
approximation more precise, especially, for 
larger depths? (iii) Can these approximations 
be used in the multimodal methods? 
   The whole 0R -scaled circular tank domain 

is conformally transformed to a half-plane so 
that the mean liquid domain maps to a 
circular segment, the transformed wetted tank 
surface becomes a chord lying on the 
horizontal axis, but the mean liquid surface 
maps to an arc lying in the upper half-plane 
(see, Fig. 1). The conformal transformation 
maps the eigenmodes nj  to nj¢  so that they 

are invariant in satisfying the Laplace 
equation, and the zero-Neumann boundary 
conditions on 0S  and 0S ¢ . The mean free 

surface (chord) 0S  transforms to the circular 

segment 0
¢S  so that the spectral condition /n n nnj k j¶ ¶ =  maps to /n nj¢ ¢¶ ¶ =  0(1 ) / (1 )n nz zk j ¢- + . 

Any z ¢ -even harmonic function in the transformed plane has the original in the physical plane which 
satisfies conditions (a) and (b) stated in the beginning. The image of (1) with 1a =  is the linear 
polynomials 1W y¢ ¢=  in the transformed plane. The analogy of the dipole-type approximation for the 

higher natural modes is the following set of the so-called harmonic polynomials (`regular’ coordinate 
functions in the transformed plane)  

 
[ /2]

2 2 2 2

0

( , ) ( 1)   ( 0,1,...);   (2 )!/ ( !(2 )!),
i

k k i k k k
i i i

k

W y z C y z i C k i k i-

=

¢ ¢ ¢ ¢ ¢= - = = -å   (2) 

( [ / 2]i  is the integer part of / 2i ) and considering their originals  
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Fig. 1: Transformation of the mean liquid domain 0Q  to 0Q ¢  
for lower ( 0/ 1h R < , (a)) and higher ( 0/ 1h R > , (b)) 
depths; 0 0/ 1h R z= + .  
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Here   1V =  
2 22( 1) / ( ( 1) )z y z- + -  is a 

vertical dipole in the 
physical plane. 
  The natural modes have a 
`singular' asymptotic 
behavior at the corner 
points 3w  and 4w  between 

0S  and 0S  (Fig. 1). For 

01 / 2h R< < , the inner 

angle at this corner point 

exceeds 1
2
p  and this 

asymptotics causes infinite  
second-order derivatives.  
Correcting `singular' 
harmonic functions if¢  are 

analytically defined in the 
transformed plane2. The 
originals of these functions 
exactly satisfy the zero-
Neumann boundary 
condition on 0S  and 

possess the needed singular 
asymptotics.  
   The `regular’ and 
`singular’ coordinate 
functions are combined in 
the Treftz variational 
method as 
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where ic  are unknown 

weight coefficients, and the 
coordinate functions are 

 
1 1 1 1 1 2 20 0 1 1 1 1 2 2 1 1 2,  ,...,  ;  ,  ,...,   ( 1)q q q q q q qW W W q q qf f f+ + + +¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢F = F = F = F = F = F = = + +   (4) 

to be substituted into the Rayleigh quotient (Faltinsen & Timokha, 2009). The original spectral boundary 
problem is reduced to a matrix spectral problem with respect to the eigenvalues nk  and the orthogonal 

eigenvectors 0 1( , ,..., )qc c c . Vekua (1953,1967) proved that the harmonic polynomials constitute a complete 

set of functions in the corresponding metrics. Numerical analysis confirms that, as long as 00 / 1h R< £ , 

using this Treftz method gives an accurate approximation of the natural sloshing modes with dominant 
contribution of the `regular’ coordinate function nW ¢  to the eigenfunction nj¢ . Moreover, for smaller depths, 

00 / 0.8h R< £ , the free-surface condition is uniformly approximated. The use of a pure `regular' basis is 

not possible for higher liquid depths. Using a few correcting `singular' functions if¢  makes it possible to get 

accurate natural modes and uniformly approximate the free-surface condition for 00.8 / 1.25h R< £  as 

illustrated in Fig. 2. 

                                                 
2 The exact mathematical expressions for these `correcting’ functions are rather massive to be included into this four-
page presentation. 
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Fig. 2: Typical relative error in satisfying the spectral boundary condition on 0S  
for middle depths, 00.8 / 1.25h R< £ . The Treftz solution is based on 
`regular’ coordinate functions (dotted line, 1 50q = ), and the use of the 
correcting `singular’ functions ( 1 250,  2q q= = , solid line); 0/ 1.2h R =  and 

1 2,q q  are defined by (4). The maximum uniform error with correcting functions 
is established for the eight mode; it is of the order 310-  (hardly seen in the 
graphs). This error for the lowest mode is of the order 510- . 



   The method requires more 
correcting functions to reach the 
needed accuracy for larger depths, 

01.25 / 1.95h R< £ . The 

eigenvalue results are consistent 
with numerical values by McIver 
(1989) and require less strict 
requirements in uniformly 
satisfying the free surface 
condition than the eigenmodes. 
Unfortunately, McIver  did not 
present the eigenmode results. The 
constructed approximate natural 
modes satisfy conditions (a)-(c) 
stated in the beginning.  
   Because the approximate natural 
modes are very accurate at the 
corner points, we are able to 
illustrate (Fig. 3) the `high spots' 
theorem by Kulczycki & 
Kuznetsov (2009) which states 
that the maximum wave elevation 
of the lowest mode occurs away 
from the tank wall when the inner 

corner angle exceeds 1
2
p . The 

absolute value of the wave slope 
at the tank wall for 0 0z >  

increases with increasing 0z  

and tends to infinity when 

0 1z  . Fig. 3 also shows 

that, for smaller depths, the 
first antisymmetric mode has 
close to a linear character, 
i.e. the eigenoscillations can 
be approximated by 

( )1cosy ts .     

2. Multimodal theory. To 
address question (iii), we 
adopt the approximate 
modes and construct the 
linear multimodal theory, 
linear modal equations and 
formula for linear potential-
flow hydrodynamic force. 
There is no potential-flow 
hydrodynamic moment 
around an axis through O . 
The hydrodynamic 
coefficients needed in the 
multimodal theory can easily 
be calculated and tabled for 
later linear sloshing 
simulations.  

   For the transient case, the results by the linear multimodal theory are compared with the CFD-
simulations by Aliabadi et al. (2003) (turning of a tanker vehicle with a constant nonzero acceleration) 
and Moderassi-Tehrani et al. (2006) (lane change of a tanker vehicle). The comparison supports 
applicability of the linear modal theory, but shows that free-surface nonlinearity may generally matter, 
especially for the higher liquid depths. Fig. 4 (d) illustrates this fact by different values of local maxima 
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Fig. 3: The eigenmode wave profiles are normalized to provide the same 
elevation at the end. The first antisymmetric mode corresponds to 1k =  

2
1 / gs , but the first symmetric mode implies 2k ;  0 0/ 1z h R= - . For 

0/ 1h R > , the local extrema are inside of 0S . 
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Fig 4: Nondimensional horizontal hydrodynamic force 2
2 1 0 2( ) / [ (2 ) ]aF t L Rr h  

for the left turning of a lorry tank containing water with the constant horizontal 
acceleration 2ah = 0.0408 g  simulated by Aliabadi et al. (2003) (dashed line) 
for 02 1R = m by using a fully nonlinear viscous 3D FEM method; 1L  is the 
longitudinal tank length. The solid lines represent results by the linear 
multimodal theory. (a) 0/ 0.3h R = , (b) 0/ 0.5h R = , (c) 0/ 0.7h R = , 
and (d) 0/ 0.9h R = . 



and minima, and the corresponding time instants in fully nonlinear simulations by Aliabadi et al. (2003) 
relative to the linear sloshing theory. The time-behavior of linear theory is dominated by oscillations with 

1s , and shows negligible viscous boundary-layer damping effects. There is also difference (less than 

15%) between our linear prediction and the nonlinear CFD-simulation by Moderassi-Tehrani et al. 
(2006) on the maximum hydrodynamic horizontal force, and the difference appears when the lane change 
time is close to the highest natural sloshing period. This difference may also be explained by 
nonlinearities by applying multimodal results for a rectangular tank. The contribution of higher modes is 
less than 1%, and viscous effects are negligible.  

   For steady-state sloshing, results of the 
linear multimodal theory are compared with 
an experimental series by Bogomaz & Sirota 
(2002), who measured steady-state wave 
elevations away from the circular walls. The 
horizontal forcing amplitude was 
0.0075472 0R , and 0/ 1.47h R =  (Fig. 5). 

Because 0 0.1325mR =  in the experiments, 

the surface tension is an error source relative 
to our theory. Bogomaz & Sirota (2002) 
discuss 3D phenomena similar to swirling for 
the shadow frequency domain. Far from this 
domain, the measurements support the linear 
multimodal theory, but there are several 
small `jumps' in the experimental responses 
which, as we show in the figure, can partly 
be explained by the secondary resonance 
phenomenon. The experimental series by 
Bogomaz & Sirota (2002) for the larger 
horizontal forcing amplitude 0.0203 0R  does 

not support the linear sloshing theory. For 
these forcing amplitude, the experimental 
observations report strongly nonlinear waves 
with transition to three-dimensional sloshing 

for 10.85 / 1.25s s£ £ . Along with Bogomaz & Sirota (2002), strongly nonlinear resonant waves and 

overturning due to resonant excitation of the lowest natural frequency are reported by other authors. 
Example of the overturning waves due to resonant excitation of the first mode is presented by Kobayashi 
et al. (1989). How to construct a nonlinear multimodal theory for 2D sloshing in a circular tank will be 
discussed. 
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Fig. 5: Comparison  between experimental data by Bogomaz 
& Sirota (2002) and the linear multimodal theory of the 0R -
scaled steady-state (maximum and minimum) wave elevation 
at the wave probe situated at 00.603777d R= ; 

0 0.1325R = m. The horizontal forcing amplitude is 

0.0075472 0R ; 0/ 1.47h R = . The shadow zone is the 
frequency domain, where 3D waves occur.  The secondary 
resonance due to the second-, third-order nonlinearities is 
indicated by ( )i

ki (Faltinsen & Timokha, 2009), where k  is the 
number of the corresponding mode, i  is the order of 
nonlinearity. 


