
A 3D Navier-Stokes solver to investigate Water-On-Deck events within a Domain-Decomposition strategy

G. Colicchio1,2 M. Greco1,2,3 C. Lugni1,2 O.M. Faltinsen2,3

g.colicchio@insean.it m.greco@insean.it c.lugni@insean.it oddfal@marin.ntnu.no

1 INSEAN, Italian Ship Model Basin, Roma – Italy.
2 Centre for Ships and Ocean Structures (CeSOS), NTNU, Trondheim – Norway.

3 Department of Marine Technology, NTNU, Trondheim – Norway.

The present analysis is a part of a research activity aimed todevelop a numerical method reliable and efficient for seakeep-
ing problems with water-on-deck occurrence. Highlightingthe need for efficient solutions, the Domain-Decomposition
(DD) algorithm was chosen. A two-dimensional DD strategy has already been developed and assessed by comparison
against experimental data and other numerical results for fluid dynamic problems similar to the one of interest. Its details
can be found for instance in Colicchioet al. (2006) and Grecoet al. (2007) and have been documented also at previous
workshops. A preliminary 3D analysis was obtained combining a weakly-nonlinear potential flow solver for the exter-
nal seakeeping problem with an in-deck shallow-water approximation to handle the water-on-deck events (seei.e. Greco
et al. 2009). This has the advantage of being very efficient but haslimitation in terms of validity because the nonlinearities
involved in the water-ship interactions are accounted for only partially. Just to mention, the water run-up is not properly
described when high-speed jets are formed and the plunging-wave phase, which usually characterizes the initial stagesof
the water shipping, is not captured.

The present study is an initial step toward a fully 3D more-general DD solver. The focus is on head sea waves and
vessel without forward motion, which are of interest for FPSOs ships used as oil platforms. On the basis of previous
2D and 3D physical and numerical studies, surface tension and turbulence effects are neglected. Within the DD, a linear
Boundary Element Method (BEM) will be used to describe the seakeeping problem in the whole fluid domain but for
an inner sea region containing the upstream portion of the vessel and its deck. There a Navier-Stokes (NS) single-phase
(water) solver will be adopted to predict the water-ship interactions and the subsequent water-on-deck occurrence. This
means that nonlinear effects are fully handled in the NS domain. The seakeeping solver furnishes the initial conditionsto
the field solver, as well as the boundary conditions in terms of free-surface elevation, pressure and velocity along control
surfaces, and ship motions along the wetted part of the vessel inside the inner region. Here the focus is on the description
of the 3D NS solver developed and on the assessment of its numerical stability and reliability when boundary conditions,
similar to those enforced within the DD, are applied.

Domain-Decomposition: linear wave theory and Navier-Stokes solvers. In a first stage, the research studies aim to
weakly couple a linear potential solver with a fully non linear Navier-Stokes (N-S) solver, with information exchange
only from the potential solver to the N-S solver and notvice versa. To make sure that numerical errors in the potential
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Figure 1: Definition of the domains of solution.

flow-calculations do not affect the coupling, the N-S solveris weakly coupled with a linear analytical potential solution.
This kind of coupling is not less compelling than the final objective of this study as the linear and non linear solutions
have a fundamental inconsistency close to the free surface,because the former assumes that the free surface is a small
perturbation of the planez = 0 and both pressure and velocity are obtained assuming valid this assumption. The non
linear N-S solver instead has to deal with actual deformation of the interface and, therefore, needs the information in
points where the potential solutin is not exactly defined as the crest and the throat of the wave. This requires a particular



care to be taken if the two domains shared boundaries are crossed by a free surface. To ensure that oscillations and errors
in those regions are limited, an overlapping domain will be used rather than a surface of contact (as seen in Colicchio
et al. 2006).

Figure 1 shows an example of two kinds of boundaries. The bottom of the rectangle, not crossed by a free surface,
is a simple surface of contact,i.e. where velocity and pressure from the potential solution areused asC(0) boundary
conditions. The right boundary, where the waves come in, is enlarged through an overlapping, to allow a softer interfacing
between inconsistent solutions. The linear pressure is assigned at a distanceβ∆x away from the real boundary of the N-S
domain so that the oscillations, caused by the inconsistency, can be damped in the solution of the Poisson equation on the
actual boundary of the N-S. Velocity and free surface elevation are provided from the linear solution in the superposition
region. In particular, the potential free surface will be used as actual wave elevation there, while a linear combination of
the N-S and potential velocity will give suitable boundary condition to the N-S domain. The length of the superposition
region is chosen equal to6∆x, where∆x is the mesh size close to the boundary. This choice ensures, besides the damping
of the pressure oscillations, also an adequate definition ofthe interface to calculate the distance function in the narrow
band at the interface boundary (Colicchio 2004).

Figure 2: Left: Comparison between theoretical (meshed in black) and numerical free surface (blue shaded) after two
wave periods. Pressure contours are plotted on the side of the domain. Right: Comparison between theoretical (black)
and numerical (green) contour plots ofx-component of the velocity.

The results of this coupling is shown in figure 2 where an Airy wave with steepnesska = 0.03 enters the N-S
domain with an angleθ = 60o. Two of the vertical boundaries, in the wave side, are characterized by the presence of
a superposition region, while the bottom is a simple contactsurface. The other two vertical boundaries present outflow
boundary conditions. On the left of the figure, the numericalfree surface (blue shade) after two periods is compared with
the Airy theory (black mesh). They are very close and the discrepancies can be attributed to well known non-linearities
that develope during the evolution, as at through of the wave. The same figure shows the oscillations that arise in the
pressure field at the potential side of the overlapping region (pink contour lines). On the right side there is the comparison
of the contour plots of thex component of the velocity. Once again the results are very similar and the discrepancies are
due to small non linearities besides inconsistencies on thebottom where the highest differences can be highlighted.

Body motion. The description of the body that is used in the 3D solution hasalready been described in Colicchioet al.
(2006). A level set function captures the surface of the body, pressure and velocity are imposed on the body surface
making use of this function. This prevents a regrid or a deformation of the mesh at each time step for a moving body,
saving computational time. As long as the body is smooth, theconvection of the level set function with the body velocity
can be very straightforward and requires very low computational time. If the body is characterized by very fine details,
it is very likely that they will be lost in the Eulerian advection. To avoid this problem a hybrid method, similar to the
one proposed in Enrightet al. (2002), will be used here. The level set function around thebody at the initial position is
described on a uniform mesh four times finer than the minimum mesh size in the computational grid. The signed distance
from the body is calculated geometrically on that mesh in a band six times larger than the maximum mesh size of the
computational grid. The cell centres in that band become a set of particles that preserves the level set function around the
body. In the time evolution, they are moved in a Lagrangian fashion, preserving all the details of the body geometry and



Figure 3: Example of hybrid tracking of the body position. A set of particles, labelled with their distance function from
the hull surface are advected on the grid.

the Eulerian level set function is calculated as their interpolation in the cell centres. A fast tracking of the particles can be
achieved taking advantage of the local topology, for example considering that the particles will not move to cells further
thenα∆x (with α < 1) from their previous position and the intialization of the level-set function can be performed just
in a subset of cells that they cross.

An example of this technique is given in figure 3, where the setof particles advecting the distance function are shown
at their initial position. The body rotates as well as the particles and the interpolation of their values on the cell centres
gives the body-distance isosurface shown in gray.

In this case, during the rotation, the use of a larger set of particles than the one necessary att = 0 allows also the
introduction of new sections of the body in the computational domain without any problem. This is particularly important
for our problems of interest: only the front part of the ship will be studied with the N-S solver, and it will move with
the motion prescribed by the potential flow solution, including pitch and sway motions which are more challenging as
described below.

Check of the outflow conditions. The example of the waves, shown before, has outlined that theused outflow condi-
tions were robust enough to cause only very small reflectionsof the wave from the computational boundaries. To make
sure that this is valid also when a body crosses the outflow section, the case of a portion of hull in a current is studied
here. Only 40% of the front part of the ship is inside the computational domain, as shown in figure 4. The above view
of the figure shows the flow deformation around the hull, at an intermediate stage. This view does not seem to show
any side-effect of the abrupt outflow condition, but the bottom view with the dynamic pressure contour plots highlights
an extreme drop of the free surface at the exit and, above all,some pressure oscillations in the exit section. A similar
behaviour is amplified when the body starts to move. Then, it is necessary to use a modified outflow condition that, at
least, is driven by more precise out-, or even in-, flow velocities. This can be done when the solver is fully coupled with
the potential solution, that gives an estimate of the local entry/exit velocity.

Such kind of coupling will be shown at the workshop as well as the application to the water on deck problem.
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Figure 4: Free surface and dynamic pressure contour plots around the bow of the hull.
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