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1 Introduction
Since the initial work of Yeung (1981), who solved the
radiation problem of a truncated cylinder oscillating
with 3 DOF in finite-depth water, there have already
been numerous exciting extensions of the method of
matched eigenfunction in a variety of related context.
Among these studies were interacting multiple cylin-
ders (Yeung & Sphaier, 1989, Yilmaz, 1998), concen-
tric cylinders and cylinder with a moonpool (Mavrako,
1988, 2004, Shipway & Evans, 2003), cylinders in
a small current (Kinoshita & Bao, 1996), cylinders
with a flexural ice sheet (Malenica & Korobkin, 2003),
and details of Helmholtz resonance of twin rectangu-
lar cylinders (Seah & Yeung, 2006). The list is not
exhaustive. Nevertheless, there is renewed interest
in having a fast and reliable way of estimating radi-
ation properties for a compound cylinder. This resur-
gence of interest derived not so much from offshore
engineering, as the original solution was intended, but
from various means to extract ocean wave energy. In
particular, in a point-absorber design (Yeung et al.,
2010), the requirement of a body to have more than
one components, with each having one type of motion
relative to the other, has led to the need to compute the
hydrodynamic properties of each individual section,
taking into account the interference effects. To this
aim, a careful mathematical analysis similar to Yeung
(1981) has been developed to understand the effects
of geometric variations on these coefficients, which
govern the resonance properties of the point-absorber
device. Applications aside, the behavior of this added
mass and damping in the low-frequency regime have
some intrinsic mathematical interest.
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2 Division of domain & solution forms
The formulation here follows closely of that used by
Yeung (1981) and Seah and Yeung (2006). Figure 1
shows a sketch of the problem under consideration.
Two concentric truncated circular cylinders are heav-
ing with amplitudes ζ1 and ζ2 in water of depth h. If
an incompressible fluid without viscosity and surface
tension is assumed, the velocity potential, which is ax-
isymmetric, can be represented by:
Φ(r, θ, z, t) = Re[−iσ(ζ1φ1(r, z, t) + ζ2φ2)e

−iσt]
(1)

where σ is the angular frequency of the heaving mo-
tion.

As shown in Fig. 1, for either φ1 or φ2, with only
minor adjustments on the body boundary conditions,
the fluid region can be divided into three subregions
with different types of spatial variation of the potential
in each. These potentials are denoted by φiq(q = 1, 2)
and φe. φi1 and φi2 are the potentials underneath the
inner and outer cylinders, respectively, while φe is the
potential associated with the infinite fluid region. In
each subregion, the usual boundary conditions apply
on the concentric cylinders, the fluid bottom, the free
surface and the radiation condition at infinity. Separa-
tion of variables enable the velocity potential in each
subregion to be expressed as infinite series of verti-
cal eigenfunctions as follows. These expansions are
constructed to satisfy all boundary conditions except
at the matching boundaries, i.e. at r = a1 and r = a2.

In the regions under the concentric cylinders, the
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Figure 1: Definition of a compound axisymmetric cylinder.



velocity potentials φiq can be expressed as the sum of
a particular (φiq

p ) and homogeneous (φiq
h ) solution.

φiq = φiq
p + φiq

h (2)

where φiq
p satisfy the inhomogeneous boundary condi-

tion
∂φiq

p

∂z
= 1, at z = −dq, (3)

Note that φiq
p is only needed for inhomogeneous body

boundary condition, i.e., for nonzero ζi. φiq
h are in-

finite sets of vertical eigenfunctions with eigenvalues
satisfying

λq
n =

nπ

h − dq

, n = 0, 1, . . . (4)

Following Yeung (1981), we can derive, for either
φ1 or φ2,

φiq
p =

1

2(h − dq)

[

(z + h)2 − r2

2

]

(5)

φiq
h =

∞
∑

n=0

[Cq
1nRq

1n(r) + Cq
2nRq

2n(r)]Z iq
n (z) (6)

where Cq
1n and Cq

2n are unknown coefficients to be de-
termined from conditions at the matching boundaries,
i.e. at r = aq. Rq

1n, Rq
2n and Z iq

n are defined as

Rq
1n(r) =







1/2 for n = 0

I0(λ
q
nr)

I0(λ
q
na2)

for n ≥ 1
(7)

Rq
2n(r) =















0 for q = 1
1
2 ln(r/a2) for n = 0, q = 2

K0(λ
q
nr)

K0(λ
q
na2)

for n ≥ 1, q = 2

(8)

Ziq
n (z) =

{

1 for n = 0√
2 cos λq

n(z + h) for n ≥ 1
(9)

Note that in region [i2] of the concentric cylinder,
the modified Bessel function K0 and a ln(r) term are
required to furnish a complete expansion for the annu-
lar cylindrical boundary. Z iq

n are sets of orthonormal
functions such that the inner product can be defined as
follows for every integer pair l and m

< Ziq
l , Ziq

m >=
1

h − dq

∫ −dq

−h
Ziq

l (z)Z iq
m(z)dz = δlm

(10)
For the exterior fluid region, φe can be expanded

into another series of vertical eigenfunction with
eigenvalues associated with the linearized free-surface
and bottom conditions, i.e.

m0 tanhm0h = σ2/g

mk tanmkh = −σ2/g, k = 1, 2, . . .
(11)

φe =
∞
∑

k=0

BkΛk(r)Z
e
k(z) (12)

where

Λk(r) =











H
(1)
0 (m0r)

H
(1)
0 (m0a2)

for k = 0

K0(mkr)
K0(mka2) for k ≥ 1

(13)

Ze
k(z) =







N
− 1

2
0 coshm0(z + h) for k = 0

N
− 1

2
k cos mk(z + h) for k ≥ 1

(14)
and Nk are well-known scale factor defined by
Eqn. (16) of Seah & Yeung (2006) such that Z e

k form
an orthonormal set:

< Ze
k, Ze

j >=
1

h

∫ 0

−h
Ze

k(z)Ze
j (z)dz = δkj

(15)

Again, the unknown coefficients Bk are determined
from the matching conditions at boundary r = a2.
As a remark, the present formulation can easily be
modified to study the hydrodynamic coefficients of a
truncated cylinder with a concentric moonpool. In this
case, di1 = h, and the fluid in this inner region is re-
quired to satisfy the linearized free-surface boundary
condition. φi1 can be expressed by the following ex-
pansion

φi1 =
∞
∑

k=0

AkΓk(r)Z
e
k(z) (16)

where
Γk(r) =







J0(m0r)
J0(m0a1) for k = 0

I0(mkr)
I0(mka1) for k ≥ 1

(17)

and Ak are unknown coefficients to be determined at
the matching boundary r = a1

3 Matching of solutions
To determine the values of Cq

1n , Cq
2n and Bk from infi-

nite series (6) and (12), it is required that the potentials
and fluxes be matched along the vertical boundaries
of adjacent fluid regions. Together with the kinematic
boundary conditions along the vertical surfaces of the
concentric cylinders, and the orthonormal properties
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Figure 2: Matching potentials on region boundaries.
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Figure 3: µ33 and λ33 of a compound cylinder with heaving outer cylinder and fixed inner cylinder.

of the sets:
[

Ziq
n

]

and [Ze
k], φi can be expressed en-

tirely in terms of C2
1n and C2

2n only. These coefficients
can then be solved explicitly from a linear system of
equations, after truncating the infinite series to finite
number of terms, say, N .

4 Results and Discussions
The results presented here are based on a basic geo-
metric configuration of a1/a2 = 0.5, d2/a2 = 0.25,
and d1/d2 = 2 with N = 50. Two water depths are
considered: h/a2 = 1 and h/a2 = 5. µ33 and λ33 are
nondimensionalized by πρa3

2 for heaving outer cylin-
der, and by πρa3

1 for heaving inner cylinder. Figure
2 illustrates the effectiveness of the matching proce-
dure. |φ| for adjacent fluid regions are plotted along
the matching boundaries, i.e. at r = a1 and r = a2.
Generally at N = 50, the matching is accurate up to
4 digits except near the corners. The integrable corner
singularity was discussed in Yeung and Wu (1989).
This singularity is weak and depends on the discon-
tinuous boundary condition at the corner.

Figure 3a and 3b show respectively µ33 and λ33

of the outer cylinder with heaving motion, while the
inner cylinder is fixed. Also, plotted in these fig-
ures are the corresponding hydrodynamic coefficients
of (a) a single-cylinder with the same radius and
draft of the outer cylinder (Yeung, 1981), (b) the
compound-cylinder results obtained from a geomet-
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Figure 4: Low frequency behaviors of λ33 for the heaving
outer cylinder at water depth h/a2 = 1 and h/a2 = 5.

ric approximation of applying the area factor to the
single-cylinder results, and (c) the same outer cylin-
der though the inner cylinder is replaced by a concen-
tric moonpool (Mavrakos, 1988). It can be observed
that if the Helmholtz frequency is identified at the crit-
ical frequency ω0 at which λ33 = 0 (Seah and Yeung,
2006). Interestingly, at frequencies < ω0, µ33 of the
compound-cylinder results agree well with those of a
cylinder with a moonpool, but are smaller at frequen-
cies > ω0. λ33 exhibits similar behavior at frequencies
far from ω0. Surprisingly, the variation of the hydro-
dynamic coefficients of the compound cylnder resem-
ble closer to those of a cylinder with a moonpool than
to those of a single cylinders. It is also of interest to
observe from Fig. 4 that the low-frequency limits of
λ33 for both the compound-cylinder and the cylinder
with a moonpool approach the same value, which is
numerically different from those of single cylinders in
Yeung (1981). This limit depends on water depth and
can be shown to be given by π(a2

2−a2
1)

2/(4ha3
2). The

derivation of this asymptotics will be presented in the
workshop. The above observations encourage us to
examine the influence of the fixed inner cylinder on
the heaving outer cylinder.

The effects for five different drafts of the inner
cylinder, (i.e. d1 = 0, 0.1, 0.25, 0.75, 0.9) are shown
in Figs. 5a and 5b. It can be observed that the varia-
tions of the draft of the inner cylinder have practically
very little effect on µ33 and λ33 of the outer cylinder.
The fluid appears to be moving outwards rather within
the “plugged” region.

How then would the outer cylinder affect the co-
efficients of the inner cylinder? It can be shown that,
unlike the previous scenario, the hydrodynamic coeffi-
cients of the heaving inner cylinder are strongly influ-
enced by the fixed outer cylinder. In general, µ33 in-
creases but λ33 decreases when compared with a sin-
gle cylinder (of the same radius and draft of the inner
cylinder) heaving in a laterally unbounded fluid. An
interesting limiting case to study this behavior is to
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Figure 5: Effect of d1 on µ33 and λ33 of the heaving outer cylinder at water depths h/a2 = 1 and h/a2 = 5.
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Figure 6: Variations of µ33 and λ33 of heaving inner cylinder with increasing radius of the outer cylinder at draft d2 = 0.

make the draft of the fixed outer cylinder zero, i.e. a
disk. This also minics the effect of a rigid ice sheet
surrounding the heaving inner cylinder. Figures 6a
and 6b show the results of varying the radius a2 of
these “ice sheets”. It is evident that increasing a2 in-
creases µ33 but decreases λ33. This can be explained
by knowing that the “ice sheet” confines the fluid flow
around the heaving inner cylinder in a vertical region,
thus increasing its added mass. The “ice sheet” also
limits the wave-making ability of the heaving inner
cylinder, hence reducing the damping.
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Figure 7: Low frequency behaviors of λ33 for the heaving
inner cylinder at water depth h/a2 = 5.

It is noteworthy that even in the presence of the
outer cylinder, the low-frequency limit of λ33 of the

heaving inner cylinder approaches the same limit of a
single cylinder of Yeung (1981). This low-frequency
limit is independent of the drafts of the outer fixed
cylinder and is confirmed in Figure 7. It is also ob-
served that λ33 decreases with increasing drafts of the
outer cylinder.
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