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1 Introduction 

The analytic solution of the hydrodynamic diffraction induced by elliptical cylinders, has admittedly attracted 
limited attention by researchers and is confined within the frames of the linear theory. Examples of studies 
reported in the literature that treat only isolated bodies (bottom seated and truncated) are those due to Williams 
[1-2] and Williams and Darwiche [3]. Recently, the present authors developed an efficient semi-analytical 
formulation and after reproducing the same results extending their work to solve the hydrodynamic diffraction 
problem by multiple bottom seated elliptical cylinders [4-5].  

The solution of the linear problem gives rise to start considering higher-order problems starting from the 
double frequency one. It evident that such a task is very demanding and extremely difficult as several problems 
must be surmounted. One of the crucial problems is the derivation of the Green’s function that governs the 
spatial variation of the “locked wave” component of hydrodynamic diffraction. The present work is devoted to 
this task and the associated procedure is outlined succinctly in the following.    
 
2 The second-order hydrodynamic problem 

Let φ2 denote the total second-order diffraction potential by an elliptical cylinder. The advisable procedure that 
has prevailed in the literature is to decompose φ2 into a “locked wave” component φ2

(DD) and a “free wave” 
component φ2

(ID). The “locked wave” component must satisfy the Laplace equation, the kinematical condition on 
the bottom, the inhomogeneous condition on the free surface, and the homogeneous kinematical condition on the 
wetted surface of the body, according to which the fluid velocity on the body due to φ2

(DD) must be zero. The free 
surface condition for the second-order problem is written as  
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where ω is the incident wave frequency, g is the acceleration due to gravity, h is the water depth and F(u,v) is the 
free surface pressure distribution due to the first order quadratic components. In elliptic coordinates u and v are 
intersecting families of confocal ellipses and hyperbolae respectively. An appropriate formulation that satisfies 
the bottom and the free surface boundary conditions is given by 
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where λtanh(λh)=ω2/g and Zj
(2)(z) are the second-order vertical eigenfunctions [6]. After introducing Eq. (2) into 

the Laplace equation and using the orthogonality relation of Zj
(2)(z) it can be shown that the “locked wave” 

component is given by the following compact formula 
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where Φl(u,v)=[Zl
(2)(h)hF(u,v)/(λ2h2+σl

2h2)+Rl(u,v)] with σl  being the solution of the second-order transcendental 
equation 4ω2/g +σltanh(σlh)=0. In addition it follows that Φl(u,v) must satisfy the inhomogeneous Helmholtz 
equation  
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where f(u,v)=1/hZl

(2)(h)F(u,v).  
 
3 Two dimensional Green’s function in elliptic coordinates 

Equation (4) should be treated in 2D space and in particular on the free surface at the area that is defined outside 
the elliptical body Σ (Fig.1) and extends to infinity. With reference the notations in Fig. 1 we define R2=ξ2+η2, 
ρ2=x2+y2 which yield q2=(x-ξ)2+(y-η)2= ρ2+R2-2ρRcos( θ-ϑ ). Using Green’s theorem, it can be shown [7] that 
the solution for Φl(u,v) is given by  
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where f(ξ, η)=1/hZl
(2)(h)F(ξ, η) and Gl is the two dimensional Green’s function associated with the eigenmode l. 

Green’s function must satisfy the homogeneous Helmoholtz equation, it must be bounded at infinity and it must 
have a zero first derivative normal to the contour of the body Σ. Green’s function must also comply with the 
following requirements: 0)(lim
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. These imply that Gl must behave as ln(q). A 

function that features these properties and in addition satisfies Helmholtz equation is the zero order Hankel 
function H0. Therefore Gl is written as  
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where κl

2=-σl
2, while the last function was put artificially in order to satisfy the kinematical condition on the 

contour of the body. Next, using Graf’s addition theorem Eq. (6) is recast to  
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It is now time to apply elliptical coordinates and define x=ccoshucosv, y=csinhusinv; ξ=ccoshβcosγ, η= 
csinhβsinγ, where c is given in terms of the elliptic eccentricity ε and the semi-major axis of the elliptical 
cylinder a as c=aε. Equation (7) is transformed into elliptical coordinates by using the Bessel to Mathieu 
functions addition theorem [8]: 

∑∞

−∞= ++′=
p lpml

j
pmlmp

m
l

j
m ququqdeR );(me);(M)()(Z )2()2()()2(

,
i)( θκ  (8) 

In Eq. (8) j=1 to 4 denotes the kind of the radial Mathieu function M(j), while Z(j) denotes respectively for j=1 to 
4  the Bessel and Hankel functions J, Y, H(1) and H(2). Finally me denotes the periodic Mathieu functions, while 
d’p,m are coefficients associated with the series expansion coefficients of Mathieu functions [8]. These 
coefficients depend also on the Mathieu parameter ql

(2)=κl
2c2/4. Introducing Eq. (8) into Eq. (7) and performing 

extensive mathematical manipulations the Green’s function Gl is recast to elliptical coordinates according to  
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where 
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4 Application of the kinematical boundary condition on the 2D contour of the elliptical cylinder 

The relation which must satisfy the associated boundary condition is given in Eq. (6) according to which the 
Green’s function has been decomposed into two parts. The first has been already determined and is expressed in 
detail in Eqs. (9) and (10). The next step is the derivation of function ),;,( γβvuHl  which according to the 
analysis that preceded must satisfy the homogeneous Helmholtz equation and must be bounded at infinity. After 
employing elliptic coordinates, Helmholtz equation can be written as  
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Equation (11) is the well-known Mathieu equation, the solution of which is given as the linear superposition of 
the infinite linearly independent solutions. Thus,  
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It is noted that the radial constituent part of Eq. (11) has two solutions, namely the modified Mathieu functions 
of the first and the third kind M(1) and M(3), respectively. Nevertheless, the former is omitted as it tends to infinity 
for large arguments u, thus satisfying the already set requirement for a bounded solution at infinity. The 
unknown at the moment coefficients Cnl(β,γ) will be calculated by applying the kinematical condition on Σ which 
in elliptic coordinates is expressed as  
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The final form for Green’s function is obtained after introducing Eqs. (9), (10) and (12) into the boundary 
condition (13) and performing several mathematical manipulations. This is written as  
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where the primes here denote differentiation with respect to the argument u.  
 
5 Numerical results  

Figures 2-5 in the following provide a visual representation on how Green’s function behaves on the free surface. 
The associated results correspond to an ellipse with a/b=0.4, where b denotes the semi-minor axis and u0=0.423. 
The wave frequency corresponds to ka=1.0 where k is the wave number. Green’s function is given as a function 
of u and v assuming β=1.224 and γ=0o. Two modes were considered, i.e. the imaginary solution (l=0) and the 
first real root (l=1) of the second-order transcendental equation. Apparently, the variation of Green’s function for 
l=0 is smoother. In both cases Green’s function decays progressively for large arguments, while for l=1 the 
decay is more abrupt. It is also important to note that at the singular point u=β, v=γ, Green’s function admits a 
maximum as expected. In fact, after this point for u>β, Green’s function decreases promptly. Finally, an 
important characteristic which must be highlighted and cannot be ascertained by the theoretical elaboration is the 
symmetry of Green’s function on either side of the x-z plane.   
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Fig. 1. The reference domain Ω extends to infinity C and does not contain the elliptical cylinder Σ.  
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Fig. 2. Real[G0(u,v)] for the imaginary solution 
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Fig. 4. Real[G1(u,v)] for the first evanescent mode 
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Fig. 3. Imag[G0(u,v)] for the imaginary solution 
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Fig. 5. Imag[G1(u,v)] for the first evanescent mode 
 
 


