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1. PROBLEM TO BE DEALT WITH 

A circular cylinder with a radius a, is fixed in water of depth h. The cover and bottom of the cylinder are 

horizontally placed at a depth of d1 and d2 respectively beneath the water surface with 0 < d1 < d2 < h. The 

height of the cylinder is thus to be d = d2 - d1. The cylinder is made of porous materials. A train of regular 

incident waves with an amplitude A and a frequency ω is propagating in the direction of θ = 0.  

As an extension of the previous work1, the elastic deformation of the cylinder surface is to be investigated 

within the context of linear hydroelastic theory. The brims of the cylinder’s cover and bottom, i.e. r = a, z 

= -d1 and z = -d2, are presumed to be fixed. Therefore, the effects of the rigid-body responses to the 

incident waves in six degrees of freedom are not considered in the present work.  

2. NATURAL MODES OF DEFORMATION 

The porous cylinder surface is treated as covered by a layer of membrane. Following the conventional 

expression used in the studies of hydroelasticity, the displacement or the deformation of the cylinder’ 

surface can be expanded in terms of a set of modal functions. 
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where (l = 1~3) represents the unknown complex modal amplitude corresponding to the np-th mode 

with the superscript (l) indicating the cover (l = 1), bottom (l = 2) or side wall (l = 3) of the cylinder 

respectively. The deformation is assumed to be small so that the displacement can be considered in the 

normal direction of corresponding surface, i.e. in the z–direction for the cover and bottom whilst in the 

radical direction for the side wall. 
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The natural modes of membrane vibration are chosen as the modal functions as shown below  
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They are solutions of the free vibration equation for a circular membrane (l = 1, 2) (see Meirovitch) 2 and 

a cylindrical membrane (l = 3) respectively, i.e. 
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where ρ represents the density of the membrane per unit area, ϖ denotes the natural frequency of free 
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vibrati  and T stands for the initial tension. The eigen value β is determined by substituting the solution 

into the boundary condition at the fixed brim, i.e.

on
( ) ( ) 0,2,1 =θaW or ( ) ( ) 0,3 =− sdW θ (s = 1or 2). Hence, 

( ) axnpnp =2,1β with xnp denoting the p-th root of e first kind, while  Jn(x), the Bessel function of th

( ) ( ) ( )22 dpπ+ . The natural mode functions3 annpβ = ( )l
npW are orthogonal and normalized as shown by 
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integral in Eq. (4). Due to the symmetry, natura  are dropped. 
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3. VELOCITY POTENTIALS 

As the fluid motion is considered, the fluid is assu sci be irrotational. The 
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velocity potential Φ(x, t) is decompos
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In Eq. (5), g designates the gravitational accele

previous work1. The detailed discussion wil entrated on the 
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n. The diffraction potential is solved in the 

solution of radiation potential corresponding to each mode of deflections in the present work. 
First, the boundary condition on the surface of the cylinder is considered. It is noted that the cylinder is 

made of porous materials. The Darcy’s law is applied on the body surface. Hence, the boundary condition 

at the cover or bottom of cylinder may be written as: 
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where δ ls denotes the Kroenecker function, i.e δ ls = 1 as  or 0 ot dewal

the boundary condition is stated as:  
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In the boundary conditions (6) and (7), the mode function
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caused by the displacement of membrane deflection.  

 e dif

function expansions. The fluid domain is divided into two regions, i  I defined by r > a 
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normal velocity of the body 

Then the radiation potentials are solved in a similar way as th fraction potential, i.e. by means of eigen 

and an interior one II as r < a. Different eigen functions

The solution of radiation potential valid in the exterior region is expressed as below. 
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The eigen functions Rn(kmr) and Zm(z) are well known and their definition is omitted here to save space. In 

the interior region, due to the deformation of the cylinder cover and bottom, there exists a normal velocity 
( )l( )l

npW (l = 1 or 2) in the boundary condition (see Eq. 6). Therefore, a particular solution npψ  is needed to 

content this normal velocity. The radiation potentials in the interior region are then written in the 

following form for l =1 and 2. 
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In Eq. (9), the part of summation in q represents the general solution, of which the eigen functions and the 

complex eigen values Kq are th
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e same as the diffraction potential. 

To determine the particular solution ( )l
npψ ( )l

npW  itself satisfies , it is noticed that the natural mode function 

a two-dimensional Helmholtz (see Eq. 3). Therefore, only a proper eigen function of z variable is required. 

Consequently, the particular solution can be expressed in the following form. 
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( )zf β by separat n of variables.  npl ioIt is easy to derive the boundary valu oblem governing the function
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It is easy to verify that the governing equation and boundary conditions given in Eq. (11) are satisfied 

oundary 

condition, it yields a system of linear algebraic equations. The coefficients and are thus determined 

and their tedious expressions are omitted here. 

For the radiation potential corresponding to the deflection of side wall (l =3), th

necessary since the normal velocity at the cover or bottom vanishes.  

The unknown coefficients
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e particular solution is not 

( )npl
mA and ( )npl

qB appeared in the expansion (8) and (9) can be determined by 

matching these two solutions at the common surface r = a. 



4. MOTION EQUATION AND HYDRODYNAMICE FORCES 

The deformation of the cylinder surface is governed by the following motion equation for the forced 

oscillation of membrane. (see Meirovitch)2. 
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The right hand side, i.e. Δpl (r, θ) represents the difference of hydrodynamic pressure on two sides of 

), the motion equation can be rewritten as: membrane. Substituting the expansion of w(l) given in Eq. (1
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Then, both sides of Eq. (14) are multiplied b ( )l
npW  and integrated over the surface Sl of 

cover, bottom or side wall as l =1, 2 or 3 respectively. 
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The results can be expressed in the following form. 
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The coefficient ( )l
nmstM , as an element of mass matrix, is defined by the following integrals: 
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matriDue to the orthogonal property of mode functions, the mass x is diagonal as shown above. The 

coefficient ( )l is the element of stiffness matrix caused by the tension distributed over the membrane, 

which is also diagonal as expressed below.  
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damping, which can be computed by the integral shown in Eq. (18). Meanwhile, shown in Eq

well is the wave-exciting force evaluated by the integral of diffraction pressure difference. 

                  (17)  

The radiation p tial makes its contribution to the hydrodynamic coefficients, i.e. a
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where the potential difference in the integrand 

=

is defined as follows for different surface Sl. 
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It can be observed that the deformation of one membrane would affect the deflection of the other one. In 

other words, the deformations of two layers of membrane are coupled. Solving the final form of motion 

equation (16), the modal amplitude ( )l
stζ is determined. 
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