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Introduction and Objectives: 
  The problem of sound scattering by vertical structures piercing the free surface is of 
importance for detection and structural integrity assessment. In this study we look at the 
scattering of an incoming monochromatic sound wave impinging on a vertical flexible (hydro-
elastic) circular cylinder clamped to the bed floor and piercing the shallow water surface. This 
model problem is relevant for a variety of engineering applications ranging from off-shore ocean 
structures to a submarine periscope [1]. The vertical uniform elastic cylinder is taken as hollow 
(constant thickness) and subject to a distribution of internal pressure (serving as our control) 
which must be optimized. 
  

   The problem is of acoustic-structure interaction nature and falls into the ongoing effort of 
developing active wave control by deforming bodies using direct or indirect means e.g. [2]. 
Previously, the authors presented a similar approach to reduce the acoustic signature from a 
floating flexible plate, demonstrating the plausibility of such a method [3, 4]. The current 
cylinder problem is a step forward looking at a model problem directly applicable for an actual 
hydroelastic engineering structure. We aim at investigating the effect of the flexibility of the 
cylinder on the scattered sound in the presence of a free surface and the potential of applying 
internal pressure  patches (continuous or discrete) to the inner side of the cylinder in order to 
reduce the structure acoustic signature and the level of the scattered sound wave. 
 

Mathematical and Numerical Formulation: 
   Linear acoustics and elastic shell dynamics are assumed as in Refs. [2, 3, 4]. The stationary 
wave equation is taken as the governing equation for the sound field. This is justified by the 
very low Mach number of underwater flows. However, caution must be exercised; shear 
refraction and scattering due to fluid motion is still possible at very short sound wave lengths. 
Water flow can also cause the free surface to deform, leading to a steep bow wave in front of the 
cylinder and a V-like wake behind it [1]. This deformation can affect the sound field near the 
cylinder, depending on the sound wave length and if the Froude number (based on cylinder’s 
diameter) is high, i.e. at the order of unity or above [5]. In calm water the Froude number is 
expected to be low and thus analysing the interaction between sound wave and the deforming 
free-surface is postponed for future studies due its complexity and the high computational cost 
[1]. Hence, the current study is focused on calm water and low to mid frequency sound waves.  
 

   The governing sound field equation in the space-frequency domain is the Helmholtz equation; 
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p is the sound pressure, ω is the incoming wave frequency and c0 is the speed of sound. The free 
surface is taken as having zero impedance and the rigid bottom has infinite impedance. 
 p = 0, at z=h , (2a) 
 ∂p/∂z = 0, at z=0 , (2b) 
where h denotes water depth and the z is the upwards coordinate. The floor may have finite 
impedance which will affect the modelling of the vertical sound wave variation as will be noted 
later, but for simplicity we will stick here with the infinite impedance. At the cylinder’s surface 
 ∂p/∂r= ρω2u, at r = a, . (3)  
where a is the cylinder’s radius, ρ is the fluid density and u is the  radial structure deflection .  
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   The cylinder’s radial, tangential and vertical defections u, v and w are governed by the 
following three linear shell equations given in Ref. [6]; 
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Here the cylinder’s wall thickness t is assumed to be much smaller than its radius a, E is 
Young’s modulus,  υ is the Poisson ratio. ρp is the cylinder’s material density and q denotes the 
distributed load acting on the cylinder in the radial direction, i.e. q = f – p, where f representing 
the internal pressure serves as the control parameter. 
   The pressure sound field complying with Eq. (1) can be expressed as 
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H(1)
s is the first-kind Hankel function and Ks is the second modified Bessel function. Thus, when 

ω/c0 > kz,m the mode is radiative and when ω/c0 < kz,m the mode decays exponentially far from 
the cylinder. The first term on the right hand side of Eq. (7) is the incoming wave and the second 
term is the scattered wave. Both waves have a cosine variation in the vertical direction to 
comply with the boundary condition of Eq. (2). If the sea floor has finite impedance, a full 
Fourier series representation in the vertical direction must be used. Examining the cylinder 
deflection Eqs. (4) to (6), shows that the radial and vertical deflection (u , w) are symmetric with 
respect to the polar angle θ while the tangential deflection v is asymmetric. Thus, we express u 
and w using a cosine transform and v by a sine transform in the θ direction. These equations are 
supplemented by edge conditions (clamped at the floor and free edge at the top). 
 

   The system of Eqs. (1) to (6) was solved using a Fast Fourier Transform (FFT) in the θ 
direction and a second-order central finite difference scheme in the vertical direction z by, 
assuming a uniform discretization grid. The scattered sound amplitudes Ams were found by 
enforcing the boundary condition on the cylinder surface, Eq. (3). The effect of each Ams- mode 
on u was found by solving coupled Eqs. (4) to (6) using a matrix pivoted LU solver [7]. The 
result thus obtained was used to generate a matrix equation for Ams. However, the resulting 
matrix was found to be ill-posed in many occasions and thus a least square operation with 
respect to cos(kz,mz) was instead applied. The matrix was then solved using the LU solver [7]. 
 

   A similar procedure was also applied to calculate the effect of exerting an internal pressure f. 
To require zero or minimum level of sound scattering, two approaches were considered. The 
first assume the ability to apply continuous pressure over the inner surface of the cylinder. The 
aim was to zero all resolved scattered wave amplitudes Ams. The internal pressure was 
decomposed using FFT in the θ direction and a cosine transform in the z direction. The effect of 
each Fourier mode on u was found by solving Eqs. (4) to (6). The result was used to build a 
matrix equation for the various modes of f by complying with Eq. (3) and requiring that Ams=0. 
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The second approach assumed a more practical scenario of discrete actuators exerting internal 
pressure on the cylinder wall. The actuators were assumed to be points or lines along the vertical 
direction with a cosine spatial variation in that direction. Their effects on u were calculated to 
generate an equation for Ams in accordance with Eq (3). The L2 norm of Ams was then minimised 
using Powell’s optimisation procedure [7] by varying the actuators amplitudes and their vertical 
locations as if they were points, or of the vertical cosine wave numbers as if they were lines. 
 

Results and Conclusions 
   An aluminium cylinder of 15 cm radius and 5 mm thickness was considered. The speed of 
sound was taken as that of fresh water (1500 m/s) and the incoming acoustic pressure amplitude 
was taken as of 1 Pa (corresponding to sound pressure level of 120dB). The incoming wave was 
assumed to have a frequency of 5000 Hz (lying in the low to mid frequency sonar range) and the 
simplest vertical spatial variation, i.e. kz0. The computational grid consisted of (401, 128, 21) 
points evenly distributed in the (r, θ, z) directions. The contour levels of the sound pressure 
modulus near the sea floor and a rigid cylinder (u=0) are shown in Figure 1(a). In front of the 
cylinder a pattern of standing waves caused by perfect reflection from the cylinder is seen while 
aft of it a V-wake, similar to that seen in water flow, can be observed. The scattered wave also 
forms side reflection; all having the same vertical distribution as the incoming sound wave. 
   When the cylinder is allowed to be flexible as depicted in Figure 1(b), some of the sound 
energy tends to leak away from the lowest vertical mode n=0 towards higher modes, as a result 
of enforcing the two edge conditions on the cylinder. The resulted acoustic signature is similar 
in many respects to that of the rigid cylinder but with a more profound V –wake and a 
noticeable higher level of reflected sound waves. 
    Calculations for a continuous internal pressure f  yielding a perfect zero scattered wave in the 
level of the grid resolution, were carried out and the results will be shown at the workshop. In 
this abstract we show the results when using the more practical approach of applying a finite 
number of controlled actuators to generate f. Numerical simulations showed that using a dozen 
of point actuators reduced the L2 norm of the scattered wave amplitude only by about 4dB. On 
the other hand, using the same number of vertical line actuators reduced the L2 norm by more 
than 10dB (see Figure 1(c)).  It is also seen that the V- wake pattern was considerably reduced 
and that the level of the reflected sound field upstream was also reduced, although some of the 
reflected pattern remained. As the incoming frequency increases the number of the discrete 
actuators should increase, in order to obtain a similar performance, thus rendering this approach 
applicable to the low frequency range of present-day sonar. The free board effect, resulting from 
extending the cylinder above the water level, will be also discussed at the work shop. 
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Fig.1: Near bottom sound pressure modulus, ranging from 0.1 to 1.5 Pa for a hollow Aluminium 
cylinder of 15 cm radius, 5 mm thickness, water depth of 8 m and sound frequency of 5000 Hz.  


