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Introduction 
In coastal and offshore engineering fluid-

structure interaction is of great interest.  Realistic 
estimation of hydrodynamic forces and motions is 
essential in the safe and cost efficient design of 
wave energy converters and offshore structures.  
With recent developments in the mathematical 
models concerning the simulation of fluid flow 
and in the speed of computers, Computational 
Fluid Dynamics (CFD) has become an important 
part of the design process. CFD provides a large 
volume of results data and is capable of simulating 
complex structures and events (Jürgens et al. 
2008).  However, the highly complex case of fully 
nonlinear fluid-structure interaction with floating 
bodies is a challenging application and there are 
limited cases reported in the literature.  Successful 
validations for focused waves and wave forces on 
fixed cylinders are described in Westphalen et al. 
(2008).  In this work the problem considered is the 
fluid structure interaction resulting from the 
driven motion of an oscillating cone on the water 
surface.  The motion of the cone is not influenced 
by the pressure and viscous forces from the water.  
The simulations involve mesh motion through 
deformation of the cells in the vertical direction as 
the cylinder oscillates vertically during the 
simulation. 

Here, the fully nonlinear Navier-Stokes 
equations are solved using a control-volume Finite 
Element (CV-FE) approach on a mesh containing 
approximately 820,000 hexahedral cells.  The 
results show very good agreement with physical 
experiments carried out by Drake et al. (2008).   

 

Computational Domain 
The simulations are performed in a three-

dimensional domain with a length and width of 
2.5m and a height of 2.0m.  The cone is placed in 
the centre, as it can be seen in Figure 1.  It has a 
top diameter of 0.6m and a steepness of the slope 
of 1:1.  The slope itself is 0.3m high.  The initial 
draught of the cone is 0.15m at a waterdepth of 
1.0m. 

 

 
Figure 1: Computational domain 

 
The cone is modelled as a cavity in the mesh.  

The outer boundaries, the bottom and the cone are 
modelled as free slip walls.  The top boundary is 
defined as a pressure outlet with constant 
atmospheric pressure. The mesh consists of 
820,000 hexahedral cells, where the regions 
around the water surface and the cone surface are 
highly refined to achieve cell edges of 
approximately 0.01m. The outer regions are 
relatively coarse to save computational resources 



and encourage numerical damping, thus avoiding 
reflections from the walls. 

The simulations were carried out using high 
performance computing on 16 CPUs.  The 
timestep is 0.0005s.  For one second of simulation 
time 28 hours of computing time on average was 
required. 

 
Motion of the Cone 

The motion of the cone is defined by the 
displacement z(t) from the initial position at t = 0s 
following the form of a Gaussian wave packet, 
which is described by 
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with .  A denotes the largest excursion 
from the still water level.  N is the number of 
frequency components and ωn is the appropriate 
circular frequency.  The central circular frequency 
ω0 [rad/s] is defined by  

0 or 1h =

0 3mω π=  

with m being an integer between 1 and 12. 

 The results presented in this paper are 
calculated with h = 0, A = ± 50mm and m = 6 and 
9. The frequency range, centred at ω0, is divided 
equally into N = 50 components. 

 
Mathematical Model 

A commercial CFD code is applied to solve the 
Navier- Stokes equations.  These are discretised 
on a hexahedral mesh by means of a CV-FE 
approach, which combines the Finite Volume 
Method within a Finite Element framework.  The 
equations are solved for both fluids, i.e. air and 
water, using a Volume of Fluid method.  The 
interface between the fluids is captured sharply 
using the scheme developed by Barth and 

Jesperson (1989) and described by Zwart (2005) 
and Zwart et al. (2003) to avoid smearing the 
surface across a large number of cells. 

The cone is displaced and the mesh adapted at 
the beginning of each timestep depending on (1) 
and (2) by moving the nodes to deform the mesh 
without changing the connectivity. After the mesh 
is adapted the Navier–Stokes equations are solved 
for the displaced mesh in a fully coupled manner 
(Ansys, 2006). 

 
Results 

Simulations have been carried out in pairs in 
order to consider the positive direction cone 
displacement for a maximum excursion of A = 
+50mm and the opposite negative displacement for 
A = -50mm.  By analysing the sum and difference 
of the wave elevation and forces for the paired 
tests, this allows the nonlinearity of the system to 
be considered.  The surface elevations for the 
numerical calculations are extracted at the 
intersection of the cone surface and the water 
volume fraction of 0.5, which is generally accepted 
as representative of the water surface.  The time 
and the surface elevations are non-dimensionalised 
by dividing by the period of the central frequency 
and A, respectively. 

In Figure 2, the vertical forces for the downward 
maximum displacement case, m = 9, are shown. 
These are non-dimensionalised using the 
expression 2' (F F g a Aρ π= ) . The measured 
force F is divided by the acceleration due to 
gravity g, the density of fresh water ρ, A and a, 
which is the radius of the cone at the waterline.  
Here, the numerically predicted fluid forces are in 
good agreement with the experiments.  A small 
difference can be observed in the crests and 
troughs, especially for the extreme values. 

To analyse the nonlinearity in the case, the time 
histories of the relative surface elevations for the 
paired tests, m = 9, have been subtracted and 
summed respectively and divided by 2.  This 
enables results to be broken down into linear and 
higher order components and compared separately.  
The sum and difference elevations for m = 9 are 
plotted in Figure 3.  For the central circular 
frequency corresponding to m = 9 the relative 
water surface elevation clearly contains a higher 
order component represented by the solid line.  



Unlike the linear part the higher order component 
is not symmetric about the mean water line.  It 
oscillates with double the frequency of the linear 
part around a slightly raised water level. 

Applying the same analysis technique for the 
vertical forces, results in the plots shown in Figure 
4.  Here, the higher order parts, i.e. the sum terms, 
have a double frequency component superimposed 
on an asymmetric positive component. 
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Figure 2 Non-dimensionalised vertical forces on 
cone: maximum excursion negative; Physical 
experiments by Drake et al. (2008) 

 
The total force may be decomposed into its 

hydrostatic and hydrodynamic parts. The 
hydrostatic part results from the buoyancy force, 
which is subtracted from the total force to obtain 
the hydrodynamic contribution.  Figure 5 shows 
the non-dimensionalised vertical forces for m = 9 
for the maximum excursion negative case, 
decomposed into dynamic and hydrostatic 
components.  For the lower frequency case, m = 6, 
the same plot is shown in Figure 6. Here, the 
hydrodynamic force is a much smaller component 
of the total force. 

This is because, due to the higher central 
circular frequency for larger m, the Keulegan-
Carpenter number, KC, given by 

0

0.3
ATKc ω= ,    (3)  

reduces. A is the maximum excursion, Tω0 the 
period corresponding to the central frequency and 
0.3 is the diameter of the cone at still water.  KC 
describes the relationship between the drag forces 
over the inertia. For lower KC the inertia dominates 
the force contribution. This can be seen in the 
results. For case m = 9, with KC = 0.11, the 
dynamic force component, which is related to the 
inertia of the cone is more developed than for case 
m = 6, with KC  = 0.16. 
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Figure 3 Surface elevation: half-sum and half-
difference comparison (m = 9) 

Conclusions 
Preliminary CFD results for the study of 

nonlinear wave-structure interaction resulting from 
the forced motion of a cone near the water surface 
have been presented. The Navier-Stokes solver 
performed well within this challenging case 
involving multi-phase fluid flow with mesh motion 
and deformation.  In this application the CFD code 
predicts well high order force components on a 
moving structure, which makes such packages very 
interesting for the design of e.g. offshore 
structures, where this knowledge is crucial for safe 
and economical solutions. 

Further tests with different central circular 
frequencies for the Gaussian wave packet will be 
carried out to further investigate the behaviour of 
the applied CFD code. 
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Figure 6 Non-dimensionalised force components 
for m = 6: maximum excursion negative 

Figure 4 Non-dimensionalised vertical forces: 
Half-sum and half-difference comparison (m = 9) 
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