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INTRODUCTION 
Density of sea water is actually changing with the depth 
due to the variations in salinity and temperature in the 
water depth direction. In the deep water area, the change 
in water density is evident, and internal waves may be 
generated inside stratification water. This phenomenon 
may induce potential risk to deep water engineering 
structures. 

The simplest model for internal waves is the two-layer 
fluid model. In this model there exists a density 
discontinuity at the interface between the upper and the 
lower layers, and the density is constant in each layer.  
Ten and Kashiwagi (2006) used boundary 
integral-equation method, and developed a linearized 
2-D radiation model. Yeung and Nguyen (1999) derived 
the Green functions in two-layer fluid of finite depth for 
3-D problems. 

All of those studies are carried out in the frequency 
domain. In this paper, a time-domain model is developed 
for internal wave diffraction from a 3-D body located in 
the upper layer fluid. The method uses simple Green 
functions, and is implemented with higher-order 
boundary element method (Teng, et al, 2006). 
Comparisons are made with an analytic solution for a 
truncated cylinder, and examination shows that the 
model gives very steady results and has good agreement 
with the analytic solution. 
 

NUMERICAL MODEL 
A Cartesian coordinate system is defined with the 

origin in the plane of the undisturbed free surface, and 
the z-axis positive upwards. Other notations are shown in 
Fig.1. The densities of the fluids in the upper and the 

lower layers are 1ρ  and 2ρ , respectively. The fluid in 

each layer is assumed to be inviscid and incompressible, 
and the flow irrotational. So the velocity potential 

( )1 , , ,x y z tΦ and ( )2 , , ,x y z tΦ  in the fluid domain 

1Ω and 2Ω  satisfy Laplace equation. 
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Fig.1 Definition Sketch  

 
Under the assumption of small wave steepness, the 

linearized boundary conditions are satisfied as follows: 

1 1 0tt zgφ φ+ = ,    on z=0  (1) 

1 2
z zφ φ= ,        on z=-h1 (2) 

1 1 2 2( )tt z tt zg gγ φ φ φ φ+ = + ,    on z=-h1 (3) 

2 0zφ = ,         on z=-h1-h2 (4) 

where 1 2/γ ρ ρ= . 

The wave elevation on the free surface 1η and on the 

interface 2η , have the relations as following: 

1 1
t gφ η= − ,   on z=0 (5) 

2 2
t zη φ= ,   on z=-h1 (6) 

For simplicity, we divide the potentials into the 
incident and the diffraction potentials in the form: 

1 1 1
i dφ φΦ = + ,  2 2 2

i dφ φΦ = +  (7) 



The incident potentials and the wave elevations are as 
follows: 
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1 cos cos sini A k x y tη β β ω= + −  (10) 

( )( )2 cos cos sini A k x y tη β β ω= + −  (11) 
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where [ ]1 1 0 1/ cosh 1 / tanhA A kh k k kh= − , 

2
0 /k gω= , k and k0 satisfy the dispersion relations as 

follows: 
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The above equation has two roots, and they are 
corresponding to the ‘surface wave mode’ and the 
‘internal wave mode’, respectively. Eq.(13) can be 
simplified as follows when h1 and h2 are great enough: 
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It can be seen obviously that the first root corresponding 
to the surface wave mode, and the other corresponding to 
the internal wave mode. In this paper we only concern to 
the internal wave mode. 

For the diffraction potential, the linerazed boundary 
conditions are satisfied as follows: 

1 1
d z i zφ φ= −  on SB (15) 

2 0d zφ =   on z=-h1-h2 (16) 
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We define 1 2
d dϕ γ φ φ= − , then the Eq.(18)  can be 

rewritten as: 

( ) 2
11       on -t dg z hϕ γ η= − =  (19) 

We assume the body is located in the upper fluid. 
Applying the Green’s second identity to Green function 

and diffraction velocity potential 1
dφ  and 2

dφ  in each 

layer respectively, we can obtain the integral equations: 
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1
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rπ
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2
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G
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= − −  (22) 

r is the distance between the field and the source points, 
and r2 is the distance between the field point and the 
image of the source point about the sea bed. 

The integral equation in the upper fluid includes the 
integration over the body surface, the free surface and the 
interface between the two layer of fluids. However, the 
integral equation in the lower fluid only includes the 
integration over the interface between the two layer of 
fluids. 

After discretization of Eqs. (20) and (21), we obtain 
two sets of linear equations. 
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Applying the interface conditions Eqs.(18) and (19), we 
can combine Eqs. (23) and (24) to get a single set of 
linear equations as follows: 
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In the time matching procedure, the 4th-order 
Runga-Kutta approach is used, basing on boundary 
conditions Eqs.(17), (18) and (19). Then, the time history 
of velocity potential on the body surface can be obtained. 
With the integration of wave pressure over the body 
surface, the internal wave force and moment can be 
obtained. 
 
NUMERICAL RESULTS 
A truncated cylinder in a two layer fluid has been 
calculated using the proposed method. The sketch is 
shown in Fig.1. The water depths of the upper and the 
lower layers are h1/h=0.7, h2/h=0.3. The densities of the 
fluids in the upper and the lower layers are 

1ρ =998.2kg/m3 and 2ρ =1027.2kg/m3. That means 

γ =0.97. The cylinder has a radius of a/h=0.5, and a 
draft of T/h=0.5. Figs.2-4 show the wave force and the 

wave moment on the cylinder at the wave number kh=3.5. 

The dimensionless factor for wave forces is 1 1gahAρ , 

and for moment is 2
1 1gah Aρ . It can be seen that the 

results are very steady.  
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Fig.2 Time histories of horizontal wave force  
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Fig.3 Vertical wave force time histories 
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Fig.4 Wave moment time histories 



To check the accuracy, the same cylinder has been 
calculated. And the results are compared with the 
analytical results of You, et al (2007). From Figs.5-7 we 
can see that the present results have good agreement with 
the analytical solutions. 
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Fig.5 Horizontal wave force on cylinder 
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Fig.6 Vertical wave force on cylinder 
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Fig.7 Vertical wave force on cylinder 

CONCLUSIONS 
In this paper, a 3D time-domain model for internal wave 
diffraction in a two-layer fluid is developed. Through 
combining the two integral equations in the upper and 
the lower layers, a single set of linear equations are set 
up to compute the time histories of internal wave 
potential and wave profiles. From the results of internal 
wave force and moment on a truncated cylinder, it can be 
seen that this method have good agreement with 
analytical results. 
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