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1. Introduction

Under the assumptions of classical linearised
water wave theory, the time-harmonic two-
dimensional motion of a rigid body floating
in the surface of a fluid may be characterised
by various coefficients which express compo-
nents of the hydrodynamic forces acting on
that body.

For a single body in isolation these hydro-
dynamic coefficients are relatively simple to
calculate. For bodies placed next to a vertical
wall, the corresponding calculations are often
much more complicated. Moreover, it is well-
known that the behaviour of a floating body
in waves is radically affected by the proximity
of a rigid boundary such as a harbour wall,
and this effect is manifested in major changes
to the hydrodynamic coefficients. This is due
to the near-resonant excitation, close to cer-
tain frequencies, of waves trapped between
the cylinder and the wall. Examples of the
results obtained for bodies oscillating next to
walls are given in Wang & Wahab (1971) and
Yeung & Seah (2007) where these resonances
are identified with large rapid variations in
hydrodynamic coefficients.

In this paper we use the well-known wide-
spacing approximation (see Martin (2006) for
example) to develop approximations to the
hydrodynamic coefficients for a body next to
a wall solely in terms of the results for the
forced motion the same body in the absence
of a wall.

Exact results are compared with the wide-
spacing approximations for semi-immersed
circular cylinders and cylinders of rectangular
cross-section and show excellent agreement.

2. Formulation

A two-dimensional cylinder is taken to be
floating in the surface of a fluid of density
p and infinite depth. Cartesian coordinates
are chosen with the origin in the mean free
surface and y pointing vertically downwards.
We consider the time-harmonic small-
amplitude forced sway, heave or roll (7 = 1,2
or 3 respectively) motion of the cylinder cen-
tred at the origin in the presence of a rigid
wall at x = —b, y > 0 on which a Neu-
mann condition is imposed on the potential,
¢¥(z,y). (The superscript w identifies quan-
tities associated with the wall). Linearised
water wave theory is used, in which poten-
tials ¢ (say) satisfy V%) = 0 in the fluid,
Y — 0asy — oo and 9Y/dy + K¢p = 0 on
y = 0 where K = w?/g, w being the angular
frequency and ¢ gravitational acceleration.
The radiation potentials ¢} also satisfy
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where Sp is the wetted section of the floating
body. In the case of sway and heave, n; are
the direction cosines in the z (j = 1) and y
(7 = 2) directions of the unit normal directed
into the cylinder from the fluid. In the case
of roll (j = 3) we have nz = xns + (y — ¢)ny
where (0, ¢) is the point of roll.

As v — o0,

65 (w,y) ~ AP (=1,2,3) (2)
in which the far-field radiated wave ampli-
tude AY is to be determined. Other quan-

tities of interest are the added inertia and



radiation damping coefficients af, and 0%
which define the real and imaginary parts
of the complex time-independent restoring
force matrix fj; representing the hydrody-
namic force in the component k due to a forc-
ing in mode j, defined by

fir = —bj), +iway, =ipw [ @Fnpds.  (3)
Sp

It is easy to show that f; = fi} and also that

(4)

which are all real and it follows that 0% by =
b;l)jb;fvm (]a k=1,2, 3)

One final quantity of interest is the exciting
force on a fized cylinder in direction j (see Mei
(1983, p.302)) induced by waves of amplitude
A incident from x = +o00 which is

by = LpwAVAY, (. k =1,2,3)

Pgn;ds (5)

f é",j = ipw

Sp

where ¢¢ is the scattered potential in the

presence of a wall with 0¢§/0n = 0 on Sp.
Here, it can be shown that

fsj = pgAA;,

(j=1,2,3). (6)

3. Wide-spacing approximation

The overall effect of the wall will be equiva-
lent to a radiated wave field travelling away
from the cylinder in the absence of the wall,
together with an incident wave of unknown
amplitude (D;, say) from the left being scat-
tered by the fixed cylinder (assuming the wall
is far enough away from the cylinder). Thus

(7)

where ¢; is the radiation potential for a cylin-
der making sway, heave or roll (j = 1,2 or 3)
motions at the origin but in the absence of the
wall and ¢g is the scattered potential due to
a wave incident from x = —oo on the cylinder
held fixed at the origin, again in the absence
of the wall.
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We have the far-field expressions for each
of the potentials in (7) given by

(_1)jAje—iK:c—Ky’

b5 ~ iKo—K
1 r—
Aje y’

where A; are the far-field radiated wave am-
plitudes (left-right symmetry of the cylinder
is assumed for simplicity) and

r — —00

(8)

T — +00
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g_(ele + ‘Re—lec)e—Ky7 T — —00
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r — 400

(9)
where R and T are the reflection and trans-
mission coefficients for the fixed cylinder, in
the absence of the wall, due to an incident
wave of amplitude A.

It is assumed that A;, R and T are all
known, in addition to ajx, bjx, the added in-
ertia and radiation damping coefficients in
mode k due to forced motion in mode 7, de-
fined as in (3) but without the w superscript.

It follows from (7) that for large positive x

¢ ~ (Aj + (gA/w)D;T)e =5 (10)

and for large negative x

¢y ~ ((=1)7A; + (9A/w)D;R) o—iKz—Ky
+(9A/W)Djein_Ky,(11)

These asymptotic forms are now assumed to
hold near the wall along x = —b, y > 0 where
a Neumann condition is now imposed on the
potential ¢¥'. It follows that

(—].)jAj + (gA/w)D]R = (gA/w)Dje_iA
(12)
with A = 2Kb whence

Dj = (w/gA)(=1)4;/(e7™* = R).  (13)

Substituting (13) into (10) and comparing
with (2) gives
(14)

where



5; = (R_ (=17 _e_u) . (15)

R—e A

Note that this implies 6; = d3. According to
the decomposition made in (7), the restoring
force matrix, from (3), is approximated under
the wide-spacing approximation by

Tik

where f&k = pg(—l)kAAk

Notice that (16) only holds provided j+k is
even since if j 4 k is odd, then the symmetry
of the cylinder implies that the term f;;, is
identically zero (for example, a heave motion
induces neither sway force nor roll moment
on a symmetric cylinder) and (16) is replaced
with

= —b;.”k + iwa;”k = fir+Djfsr  (16)

ik = Djfsk: (17)

Essentially (16) and (17) define, via
(13), the wide-spacing approximations to the
added inertia and radiation damping for a
cylinder in the presence of a wall in terms of
the solution to the wave radiation and scat-
tering by a cylinder in isolation. Additionally
(14), via (15), defines the far-field radiated
wave amplitudes.

However, we can make further progress
by manipulating the equations (16) and (17)
that define aj;, 0% using relations such as

bjr = 3w (1 + (=1)7F)A; 4, (18)
(clearly zero if j + k is odd) and the New-
man/Bessho relations (see Mei (1983), p.328)

R+ (—1)jT - _Aj/Aj = _e2i€j7 (19)
where 0, is the phase of the far-field radiated
amplitude in the jth mode (note #; = 63).

We omit the details here and summarise
below the simplified forms of the approxima-
tions to aj, bj.

For 7 + k odd, we obtain,

w 2(bjjbkk)% COS [4; COS [L
Jjk — ‘e—i)\ _ R|2

(20)

and
o —(bybi)® sin(; + )
Wik = o= — R|? (21)
where
For j + k even,
w 2D cos® (23)

Jjk = |e—i)\ _ R|2

where [ is either k+ 1 or k£ — 1 provided that
number falls in the set {1,2,3} whilst

ajy = ajk = (Br/w)bjk (24)

where

5, = $(—1)Fsin2(6;, — 65) — sin 2y,

‘e—i)\ _ R‘2

(25)
and here [ is either 1 or 3.

4. Results

We show, in figures 1 and 2, two sets of re-
sults for the non-dimensional’ added inertia
and radiation damping coefficients, varying
with non-dimensional frequency. In each set
of figures, the solid lines correspond to exact
calculations including the wall and the points
are calculated using the wide-spacing approx-
imation (20), (21), (23), (24).

In figure 1, results are shown for a semi-
immersed circular cylinder of radius a, whose
centre is a distance b = 2a from the wall.
In this example, there is no roll component.
As expected, the wide-spacing approximation
performs better as Ka increases, but still
does remarkably well as Ka — 0.

In figure 2, results are shown for a float-
ing rectangular cylinder of width 2a, draught
d = 2a centred a distance b = 4a from
the wall. The fluid is now of finite depth A

Yl = aly /M, v = b/ (wM) for jk = 1,2
where M is the mass of the cylinder, determined by
Archimedes’ principle. Also, u%y = a%/I, Vi =
bys/(wl) and pfy = als/VMI, viy = by /(wVMI),
j = 1,2 where I is a moment of inertia about (0, ¢)
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Figure 1: Variation of non-dimensional (a)
added mass and (b) radiation damping coef-

ficients for a circular cylinder with Ka.

(= 5d), the wavenumber k determined from
K = ktanhkh. Again the wide-spacing re-
sults, compared to exact calculations are in
excellent agreement across the range of fre-
quencies.
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Figure 2: Variation of non-dimensional (a,b)
added inertia and (¢,d) radiation damping co-
efficients for a rectangular cylinder with kd.



