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1. Introduction

Under the assumptions of classical linearised
water wave theory, the time-harmonic two-
dimensional motion of a rigid body floating
in the surface of a fluid may be characterised
by various coefficients which express compo-
nents of the hydrodynamic forces acting on
that body.

For a single body in isolation these hydro-
dynamic coefficients are relatively simple to
calculate. For bodies placed next to a vertical
wall, the corresponding calculations are often
much more complicated. Moreover, it is well-
known that the behaviour of a floating body
in waves is radically affected by the proximity
of a rigid boundary such as a harbour wall,
and this effect is manifested in major changes
to the hydrodynamic coefficients. This is due
to the near-resonant excitation, close to cer-
tain frequencies, of waves trapped between
the cylinder and the wall. Examples of the
results obtained for bodies oscillating next to
walls are given in Wang & Wahab (1971) and
Yeung & Seah (2007) where these resonances
are identified with large rapid variations in
hydrodynamic coefficients.

In this paper we use the well-known wide-
spacing approximation (see Martin (2006) for
example) to develop approximations to the
hydrodynamic coefficients for a body next to
a wall solely in terms of the results for the
forced motion the same body in the absence
of a wall.

Exact results are compared with the wide-
spacing approximations for semi-immersed
circular cylinders and cylinders of rectangular
cross-section and show excellent agreement.

2. Formulation

A two-dimensional cylinder is taken to be
floating in the surface of a fluid of density
ρ and infinite depth. Cartesian coordinates
are chosen with the origin in the mean free
surface and y pointing vertically downwards.

We consider the time-harmonic small-
amplitude forced sway, heave or roll (j = 1, 2
or 3 respectively) motion of the cylinder cen-
tred at the origin in the presence of a rigid
wall at x = −b, y > 0 on which a Neu-
mann condition is imposed on the potential,
φw

j (x, y). (The superscript w identifies quan-
tities associated with the wall). Linearised
water wave theory is used, in which poten-
tials ψ (say) satisfy ∇2ψ = 0 in the fluid,
ψ → 0 as y → ∞ and ∂ψ/∂y + Kψ = 0 on
y = 0 where K = ω2/g, ω being the angular
frequency and g gravitational acceleration.

The radiation potentials φw
j also satisfy

∂φw
j

∂n
= nj , (x, y) ∈ SB (j = 1, 2, 3) (1)

where SB is the wetted section of the floating
body. In the case of sway and heave, nj are
the direction cosines in the x (j = 1) and y
(j = 2) directions of the unit normal directed
into the cylinder from the fluid. In the case
of roll (j = 3) we have n3 = xn2 + (y − c)n1

where (0, c) is the point of roll.
As x→ ∞,

φw
j (x, y) ∼ Aw

j eiKx−Ky, (j = 1, 2, 3) (2)

in which the far-field radiated wave ampli-
tude Aw

j is to be determined. Other quan-
tities of interest are the added inertia and



radiation damping coefficients aw
jk and bwjk

which define the real and imaginary parts
of the complex time-independent restoring
force matrix fw

jk representing the hydrody-
namic force in the component k due to a forc-
ing in mode j, defined by

fw
jk ≡ −bwjk + iωaw

jk = iρω

∫

SB

φw
j nkds. (3)

It is easy to show that fw
jk = fw

kj and also that

bwjk = 1

2
ρωAw

j Ā
w
k , (j, k = 1, 2, 3) (4)

which are all real and it follows that bwjkb
w
kj =

bwjjb
w
kk, (j, k = 1, 2, 3).

One final quantity of interest is the exciting
force on a fixed cylinder in direction j (see Mei
(1983, p.302)) induced by waves of amplitude
A incident from x = +∞ which is

fw
S,j = iρω

∫

SB

φw
Snjds (5)

where φw
S is the scattered potential in the

presence of a wall with ∂φw
S/∂n = 0 on SB.

Here, it can be shown that

fw
S,j = ρgAAw

j , (j = 1, 2, 3). (6)

3. Wide-spacing approximation

The overall effect of the wall will be equiva-
lent to a radiated wave field travelling away
from the cylinder in the absence of the wall,
together with an incident wave of unknown
amplitude (Dj , say) from the left being scat-
tered by the fixed cylinder (assuming the wall
is far enough away from the cylinder). Thus

φw
j = φj +DjφS, (j = 1, 2, 3), (7)

where φj is the radiation potential for a cylin-
der making sway, heave or roll (j = 1, 2 or 3)
motions at the origin but in the absence of the
wall and φS is the scattered potential due to
a wave incident from x = −∞ on the cylinder
held fixed at the origin, again in the absence
of the wall.

We have the far-field expressions for each
of the potentials in (7) given by

φj ∼
{

(−1)jAje
−iKx−Ky, x→ −∞

Aje
iKx−Ky, x → +∞

(8)

where Aj are the far-field radiated wave am-
plitudes (left-right symmetry of the cylinder
is assumed for simplicity) and

φS ∼











gA

ω
(eiKx +Re−iKx)e−Ky, x → −∞

gA

ω
T eiKx−Ky, x→ +∞

(9)
where R and T are the reflection and trans-
mission coefficients for the fixed cylinder, in
the absence of the wall, due to an incident
wave of amplitude A.

It is assumed that Aj, R and T are all
known, in addition to ajk, bjk, the added in-
ertia and radiation damping coefficients in
mode k due to forced motion in mode j, de-
fined as in (3) but without the w superscript.

It follows from (7) that for large positive x

φw
j ∼ (Aj + (gA/ω)DjT )eiKx−Ky (10)

and for large negative x

φw
j ∼

(

(−1)jAj + (gA/ω)DjR
)

e−iKx−Ky

+(gA/ω)Dje
iKx−Ky.(11)

These asymptotic forms are now assumed to
hold near the wall along x = −b, y > 0 where
a Neumann condition is now imposed on the
potential φw

j . It follows that

(−1)jAj + (gA/ω)DjR = (gA/ω)Dje
−iλ

(12)
with λ = 2Kb whence

Dj = (ω/gA)(−1)jAj/(e
−iλ − R). (13)

Substituting (13) into (10) and comparing
with (2) gives

Aw
j = δjAj, (14)

where



δj =

(

R − (−1)jT − e−iλ

R− e−iλ

)

. (15)

Note that this implies δ1 = δ3. According to
the decomposition made in (7), the restoring
force matrix, from (3), is approximated under
the wide-spacing approximation by

fw
jk ≡ −bwjk + iωaw

jk = fjk +DjfS,k (16)

where fS,k = ρg(−1)kAAk.
Notice that (16) only holds provided j+k is

even since if j+ k is odd, then the symmetry
of the cylinder implies that the term fjk is
identically zero (for example, a heave motion
induces neither sway force nor roll moment
on a symmetric cylinder) and (16) is replaced
with

fw
jk = DjfS,k. (17)

Essentially (16) and (17) define, via
(13), the wide-spacing approximations to the
added inertia and radiation damping for a
cylinder in the presence of a wall in terms of
the solution to the wave radiation and scat-
tering by a cylinder in isolation. Additionally
(14), via (15), defines the far-field radiated
wave amplitudes.

However, we can make further progress
by manipulating the equations (16) and (17)
that define aw

jk, b
w
jk using relations such as

bjk = 1

2
ρω(1 + (−1)j+k)AjĀk (18)

(clearly zero if j + k is odd) and the New-
man/Bessho relations (see Mei (1983), p.328)

R+ (−1)jT = −Aj/Āj = −e2iθj , (19)

where θj is the phase of the far-field radiated
amplitude in the jth mode (note θ1 = θ3).

We omit the details here and summarise
below the simplified forms of the approxima-
tions to aw

jk, b
w
jk.

For j + k odd, we obtain,

bwjk =
2(bjjbkk)

1

2 cosµj cosµk

|e−iλ −R|2 (20)

and

ωaw
jk =

−(bjjbkk)
1

2 sin(µj + µk)

|e−iλ −R|2 (21)

where
µj = θj +Kb. (22)

For j + k even,

bwjk =
2bjk cos2 µl

|e−iλ − R|2 (23)

where l is either k+ 1 or k− 1 provided that
number falls in the set {1, 2, 3} whilst

aw
jk = ajk − (βk/ω)bjk (24)

where

βk =
1

2
(−1)k sin 2(θl − θ2) − sin 2µk

|e−iλ − R|2 (25)

and here l is either 1 or 3.

4. Results

We show, in figures 1 and 2, two sets of re-
sults for the non-dimensional1 added inertia
and radiation damping coefficients, varying
with non-dimensional frequency. In each set
of figures, the solid lines correspond to exact
calculations including the wall and the points
are calculated using the wide-spacing approx-
imation (20), (21), (23), (24).

In figure 1, results are shown for a semi-
immersed circular cylinder of radius a, whose
centre is a distance b = 2a from the wall.
In this example, there is no roll component.
As expected, the wide-spacing approximation
performs better as Ka increases, but still
does remarkably well as Ka→ 0.

In figure 2, results are shown for a float-
ing rectangular cylinder of width 2a, draught
d = 2a centred a distance b = 4a from
the wall. The fluid is now of finite depth h

1µw
jk = aw

jk/M , νw
jk = bw

jk/(ωM) for j, k = 1, 2
where M is the mass of the cylinder, determined by
Archimedes’ principle. Also, µw

33
= aw

33
/I, νw

33
=

bw
33

/(ωI) and µw
j3 = aw

j3/
√

MI, νw
j3 = bw

j3/(ω
√

MI),
j = 1, 2 where I is a moment of inertia about (0, c)
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Figure 1: Variation of non-dimensional (a)
added mass and (b) radiation damping coef-
ficients for a circular cylinder with Ka.

(= 5d), the wavenumber k determined from
K = k tanh kh. Again the wide-spacing re-
sults, compared to exact calculations are in
excellent agreement across the range of fre-
quencies.
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Figure 2: Variation of non-dimensional (a,b)
added inertia and (c,d) radiation damping co-
efficients for a rectangular cylinder with kd.


