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1 Introduction

The Marginal Ice Zone (MIZ) is an interfacial re-
gion which forms at the boundary of open and
frozen ocean. It consists of vast fields of ice floes
scattering the incoming ocean waves and it is of
great importance to climate research to under-
stand wave propagation and scattering and wave-
induced break up in the MIZ (see Squire, 2007,
for more information).

We present here a computationally efficient
method to calculate the scattering of vast fields
of bodies within the framework of linear theory.
It is the aim to apply this method to approximate
the scattering characteristics of the MIZ without
having to assume the problem is two-dimensional
but the method is general and applies to a vari-
ety of situations. The idea is briefly summarised
as follows: We group several bodies into modules
and determine the scattering characteristics of an
infinite periodic line array of such modules. The
field of bodies is then assembled by placing many
infinite line arrays behind one another. A sketch
of the geometry is given in figure 1. Ultimately
we aim to use this method to determine the atten-
uation coefficient which we can compare to exist-
ing two-dimensional theory (Kohout & Meylan,
2008) or to experimental measurements.

It was described in Meylan (2002) how to cal-
culate the scattering by a single ice floe of arbi-
trary geometry modelled as a thin elastic plate.
An interaction theory (Kagemoto & Yue, 1986;
Peter & Meylan, 2004) provides an efficient exact
algebraic method for calculating the scattering by
finitely many bodies. Grouping such an arrange-
ment of bodies into a module, the scattering by
an infinite periodic line array of modules is easily
calculated using the method described in Peter
et al. (2006). There, it was shown that the scat-
tered wave field away from the array consists of
plane waves propagating in a finite number of di-
rections and that this far-field approximation is

accurate even near the array. Using an idea of
McPhedran et al. (1999), developed for electro-
magnetic scattering by cylinders, we present an
explicit iterative method allowing the scattering
characteristics of a stack of many arrays placed
one behind the other to be calculated. This
method requires that the arrays have the same
periodic spacing, but does not require that the
arrays are identical nor that the spacing between
arrays is constant. This allows us to perform av-
eraging, which is important to remove resonance
effects.

Fig. 1: Sketch of the geometry (plan view). Many
periodic arrays of modules form the stack approx-
imating part of the MIZ.

2 Statement of the problem

We consider the water-wave scattering of a plane
wave by vertically non-overlapping bodies. The
ambient plane wave is assumed to travel in the
direction χ ∈ (0, π), where χ is measured with
respect to the x-axis. Let (rj, θj, z) be the lo-
cal cylindrical coordinates of the jth body, ∆j.
The global coordinates, centred at the origin, are
denoted by (x, y, z) (Cartesian) or (r, θ, z) (cylin-
drical).

The equations of motion for the water are
derived from the linearised inviscid theory as-
suming irrotational motion. Restricting to time-
harmonic motion with radian frequency ω, the
velocity potential Φ can be expressed as the
real part of a complex quantity, Φ(y, t) =



Re {φ(y)e−iωt}. To simplify notation, y =
(x, y, z) always denotes a point in the water,
which is assumed to be of constant finite depth d,
while x always denotes a point of the undisturbed
water surface assumed at z = 0.

Writing α = ω2/g, where g is the acceleration
due to gravity, the potential φ has to satisfy the
standard boundary-value problem

∇2φ = 0, y ∈ D, (1a)

∂φ

∂z
= αφ, x ∈ Γf , (1b)

∂φ

∂z
= 0, y ∈ D, z = −d, (1c)

where D = (R2 × (−d, 0))\
⋃
j ∆j is the domain

occupied by the water and Γf is the free water
surface. At the immersed body surface, the water
velocity potential has to equal the normal veloc-
ity of the body. For an ice floe at the water sur-
face, modelled as a thin elastic plate as in Meylan
(2002), this reads

D∇4w−ω2ρ∆hw = iωρφ−ρgw, x ∈ ∆j, (1d)

with complex floe displacement w(x), water den-
sity ρ, ice rigidity D, density ρ∆ and thickness h.
Moreover, a radiation condition is imposed en-
suring that there are only outgoing waves from
each scatterer and we denote the ambient inci-
dent potential by φIn = Ag

ω
f0(z)eik(x cosχ+y sinχ).

The positive wavenumber k is related to α by the
dispersion relation α = k tanh kd, and the values
of km, m > 0, are given as positive real roots of
the dispersion relation α + km tan kmd = 0. For
ease of notation, we write k0 = −ik.

2.1 Eigenfunction expansion

The scattered potential of a body ∆j can be ex-
panded in singular cylindrical eigenfunctions,

φS
j =

∞∑
m=0

fm(z)
∞∑

µ=−∞

AjmµKµ(kmrj)e
iµθj , (2)

with discrete coefficients Ajmµ, where fm(z) =
cos km(z+d)

cos kmd
. The incident potential upon body ∆j

can be also be expanded in regular cylindrical
eigenfunctions,

φI
j =

∞∑
n=0

fn(z)
∞∑

ν=−∞

Dj
nνIν(knrj)e

iνθj , (3)

with discrete coefficients Dj
nν . In these expan-

sions, Iν and Kν denote the modified Bessel func-
tions of the first and second kind, respectively,
both of order ν.

2.2 Diffraction transfer operators

In what follows, we make extensive use of diffrac-
tion transfer operators, sometimes referred to as
T-matrices. In general, it is possible to relate the
total incident and scattered partial waves for any
structure through the diffraction characteristics
of that body in isolation. There exist diffraction
transfer operators Bl that relate the coefficients
of the incident and scattered partial waves, such
that

Almµ =
∞∑
n=0

∞∑
ν=−∞

Bl
mnµνD

l
nν , (4)

where Al are the amplitudes of the scattered
modes due to the incident modes of amplitude
Dl. The idea of the diffraction transfer operator
is not restricted to a single structure. We can
thus associate such an operator with a module.

3 Scattering by a module

We first present an efficient method to calculate
the diffraction transfer operator for a module of
bodies, which we will group in a periodic line ar-
ray in the next section.

The scattering properties of a finite number
of bodies can be calculated in many different
ways, for example by using the finite element
method, which involves discretising all body sur-
faces, or, more efficiently, using an interaction
theory (Kagemoto & Yue, 1986; Peter & Meylan,
2004). For our purposes, the scattered wavefield
needs to be represented in terms of eigenfunction
expansions (2), (3) in order to allow the scat-
tering properties of a module to be described by
a single diffraction transfer operator. We briefly
summarise how this can be achieved using the in-
teraction theory. Note that the idea of using the
interaction theory to group several bodies into
modules has been successfully applied previously
in the context of interactions of finitely many
bodies (Kashiwagi, 2000; Chakrabarti, 2000).

A system of equations for the unknown co-
efficients (in the expansion (2)) of the scattered
wavefields of all N bodies of the module can be
developed based on transforming the scattered
potential of ∆j into an incident potential upon



∆l (j 6= l). Doing this for all bodies simulta-
neously, and relating the incident and scattered
potential for each body, a system of equations for
the unknown coefficients follows.

It turns out that the coefficients of the scat-
tered wavefield of each body ∆l in the expansion
(2) satisfy

Almµ =
∞∑
n=0

∞∑
ν=−∞

Bl
mnµν

[
D̂l
nν (5)

+
N∑

j=1
j 6=l

∞∑
τ=−∞

Ajnτ (−1)νKτ−ν(knRjl)e
i(τ−ν)ϑjl

]
,

m ∈ N, µ ∈ Z, l = 1, . . . , N , where (Rjl, ϑjl)
are the coordinates of the mean-centre position
of the lth body in terms of the coordinate sys-
tem of the jth body and D̂l

nν are the coefficients
of the incident wave in the expansion (3) centred
at the lth body. Solving the system of equations
(5) for all possible cylindrical incident waves of
unit amplitude (i.e. for Dnν = 1 for one (n, ν) at
a time and zero for the others) and adding up the
scattered waves with respect to the origin yields
the diffraction transfer operator M of the module
made up of the bodies ∆j, j = 1, . . . , N .

4 Scattering by a periodic array

In the same way as in the previous section, we
can use the interaction theory to derive a sys-
tem of equations for the periodic line array made
up of identical modules with diffraction transfer
operator M , where the module mean-centre po-
sitions are located at (jR, 0), j ∈ Z (see Peter
et al., 2006, for details).

Owing to the periodicity of the geometry and
of the incident wave, the coefficients Almµ can be
written as Almµ = PlA

0
mµ = PlAmµ, say, where

Pl = eilRk cosχ. The same can be done for the co-
efficients of the incident ambient wave, i.e. D̃l

nν =
PlD̃nν , where D̃nν are the coefficients of φIn in
the expansion (3). Noting that P−1

l = P−l and
PjPl = Pj+l, (5) simplifies to

Amµ =
∞∑
n=0

∞∑
ν=−∞

Mmnµν

×
[
D̃nν + (−1)ν

∞∑
τ=−∞

Anτ σ
n
τ−ν

]
, (6)

where the constants σnν are defined as σnν =∑∞
j=1(P−j + (−1)νPj)Kν(knjR). These can be

evaluated separately since they do not contain
any unknowns. The efficient computation of the
constants σ0

ν is not trivial but appropriate meth-
ods are outlined in Peter et al. (2006) based on
results of Linton (1998).

4.1 The far field

In this section, we summarise how the far field
can be calculated, which describes the scatter-
ing far away from the array. First, we define
the scattering angles, which give the directions
of propagation of plane scattered waves far away
from the array. Letting p = 2π/R, the scattering
angles χm are

χm = arccos(ψm/k), where ψm = k cosχ+mp,

and we write ψ for ψ0. Also note that χ0 = χ by
definition. If |ψm| < k, we say that m ∈ M and
then 0 < χm < π.

It turns out that, as y → ±∞, the far field
consists of a set of plane waves propagating in
the directions θ = ±χm:

φ ∼ φIn + f0(z)
∑
m∈M

A±meikr cos(θ∓χm), (7)

where

A±m =
πi

kR

1

sinχm

∞∑
µ=−∞

A0µ e±iµχm . (8)

It is implicit in the above that sinχm 6= 0 for all
m and we do not consider the resonant case of
equality here.

4.2 Reflection and transmission matrices

For given k, R and χ, the far-field scattering char-
acteristics of a line array Lj are completely de-
scribed by the reflection and transmission matri-
ces rj, tj ∈ C#M×#M, in which the coefficients
A−m and δm0 +A+

0 , respectively, are saved, calcu-
lated for each incident angle χm.

It is useful to know how the reflection and
transmission matrices change if the array un-
dergoes a translation such that the mean-centre
position of the zeroth body (originally located
at (0, 0)) is shifted to lie at some new posi-
tion (x, y). Writing P = dexp(ikx cosχm)c and
Q = dexp(iky sinχm)c, where damc is a diagonal
matrix with diagonal elements am, the reflection
and transmission matrices of the translated array
are given by P−1QrjQP and P−1Q−1tjQP , resp.
As expected, a shift in the x-direction by a mul-



tiple of the array spacing R leaves the matrices
unchanged.

5 Scattering by multiple arrays

It was found in Peter et al. (2006) that the far-
field approximation is very good even near the
line array and numerical experiments confirm this
observation. Based on ideas of McPhedran et al.
(1999) for electromagnetic scattering by cylin-
ders, we present an explicit iterative method to
stack up many periodic line arrays.

Once k, R and χ are fixed, a plane wave of
incindent angle χl for a l ∈ M will results in
transmitted and reflected waves travelling in the
directions ±χm, m ∈M. Thus, for a stack of ar-
rays of the same horizontal spacing R, only waves
in the directions ±χm, m ∈ M, need to be con-
sidered.

For given k, R and χ, the scattering char-
acteristics of a line array Lj are completely de-
scribed by the matrices rj, tj ∈ C#M×#M. As-
suming that the reflection and transmission ma-
trices for a stack of n − 1 modules is already
known and given by Rn−1 and Tn−1, the nth ar-
ray can be added on as follows: Let sn > 0 be
the (vertical) spacing between the stack and the
array to be added on. With the diagonal ma-
trix Qn = dexp(iksn sinχm)c (cf. §4.2), the total
reflection and transmission matrices of the stack
composed of n arrays is given by

Rn = rn + tnQnRn−1Qn(I− rnQnRn−1Qn)−1tn,

Tn = Q−1
n Tn−1Qn(I− rnQnRn−1Qn)−1tn. (9)

6 Simulation results

We present a typical set of results, which can be
extracted from the presented theory. We consider
square ice floes having side length 2 and stiffness
β = 0.02, mass γ = 0.02 (in dimensionless pa-
rameters of Meylan, 2002) and Poisson’s ratio
ν = 1/3. We take d = 1/2 and χ = π/3 and
consider two incident wavelengths: λ = 1.8 and
λ = 2.5.

In the figure below, the total transmitted en-
ergy is plotted versus the number of arrays in the
stack for arrays with spacing R = 4 and sn = 4.
Furthermore, results are presented for an average
of 200 simulations, where sn randomly changes
about mean 4 with standard deviation 1/3 and
where R and sn randomly change about mean 4.
It can be seen that some randomisation is nec-
essary in order to get rid of certain resonances

introduced by the periodicity. The curves show
a clear exponential type attenuation of wave en-
ergy, exactly as measured, and we believe that we
can extract the relevant geophysical parameters
straightforwardly using our solution method.
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