
Resonances and the Approximation of Wave Forcing for

Elastic Floating Bodies

Michael H. Meylan1 Marko Tomic2

1Department of Mathematics, University of Auckland, New Zealand

2Faculty of Mech. Eng. and Naval Architecture, University of Zagreb, Croatia

e-mail addresses: meylan@math.auckland.ac.nz, marko.tomic@fsb.hr

1 Introduction

The central problem in hydroelasticity is to cal-
culating the response of an elastic body subject
to wave forcing. The majority of the research
in hydroelasticity has been aimed at predicting
the response in the frequency domain, and de-
tails of the various methods developed can be
found in the review articles (Squire et al., 1995;
Squire, 2007), which are mainly focused on ice,
and (Kashiwagi, 2000; Watanabe et al., 2004),
which are focused primarily on VLFS.

We present here a method to determine ap-
proximately the positions of the resonances or
scattering frequencies for a floating elastic body
in a fluid with a free surface. Resonances are
rather mysterious objects which are far from fully
understood. The simplest way to think of them
is as representing the new positions of the eigen-
values of the free vibration of the elastic body in
the presence of the fluid. Associated with these
points are functions which represent the modes
of vibration of the body. However, they are not
eigenvalues of any operator and the associated
functions are not eigenvectors. The expansion of
the solution in terms of the resonances will gen-
erally be only an approximation. One exception
to this is the problem of an elastic plate on shal-
low water (Meylan, 2002), where the resonances
do give a complete solution. Resonances have
been investigated in the water-wave context by
Hazard & Lenoir (1993, 2002) and for the case
of a plate by Hazard & Loret (2007); Peter &
Meylan (2008). They have also been found for
non-elastic bodies, and appear in Evans & Porter
(1997); McIver (2005); Meylan & Eatock Taylor
(2009).

In this present paper we begin with the gen-
eral equation in the frequency domain, written in
terms of the generalized modes. This equation is

closely related to the standard method to solve
for a rigid body in terms of the six rigid-body
motions. The resonances arise when we extend
the definition of the added mass and damping
analytically for complex frequencies. We present
here a method to approximate the positions of
the resonances, using only values for the added
mass and damping calculated on the real axis.
This means that the method could be used in
commercial code without requiring modification
to work for complex frequencies. We also show
how knowledge of the resonances allows us to ap-
proximate the response for real frequencies.

We apply the theory to the problem of a two-
dimensional elastic plate floating on the water
surface and present some numerical results. We
show that we get good results using this theory.
We also show that the method becomes less valid
as the relative difference between the plate and
fluid densities becomes greater.

2 General Equations for an Elas-

tic Body

We do not derive here the general equations for
the solution in the frequency domain for a float-
ing elastic body, but rather assume them. The
equations take the form

(

K − ω2M + C − ω2A(ω) + iωB(ω)
)

ξ = f ,
(1)

where ω is the radian frequency, K is the stiff-
ness matrix, M is the mass matrix, C is the hy-
drostatic restoring matrix, A is the added mass
matrix, B is the damping matrix, ξ is the vector
of generalized modes and f is the forcing due to
the incident wave. To simplify this equation we
introduce the notation α = ω2 and also define

Φ(α) = −ω2A(ω) + iωB(ω). (2)



3 Associate Eigenvalue Type

Equations

Associated with equation (1) are certain equa-
tions which define either eigenvalues or reso-
nances. Some of these are well-known, but we
repeat the definition here for the purpose of il-
lustrating the important difference between wet
modes and resonances. The first equation we be-
gin with is given by

(K − αM) ξ = 0, (3)

which gives the free modes of vibration for the
elastic body. The second equation is

(K − αM + C) ξ = 0, (4)

which gives the wet modes. The third equation
is the defining equation for a resonance,

(K − αM + C + Φ(α)) ξ = 0. (5)

Equation (5) has no solutions for real α. However
we may extend the definition of Φ by analytic
continuation to complex α. This analytic exten-
sion is generally nothing more than computing Φ

for complex α, using the same formula as for real
α.

4 Approximate Solution for Reso-

nances

Most software which calculates the added mass
and damping only works for real α, and we de-
velop here a theory to find complex resonances
using only the solution for real α. The approx-
imation theory is also useful for calculating the
exact position of the resonances. The approxima-
tion is based on a Taylor series expansion of the
matrix Φ. This matrix is analytic, which means
that the derivative in the real direction is the
same as the derivative in any non-real direction,
and hence we can estimate the complex values
from knowledge of the real derivative. We write
α = α0 + δ and write equation (5) as

(K − (α0 + δ)M + C + Φ(α0) + δΦ′) ξ = 0,
(6)

where Φ′ is the derivative, which can be calcu-
lated relatively easily numerically. This is then
a standard matrix equation in δ which can be
solved. The solution for small δ can be expected

to give the approximate solution for the reso-
nance. Note that this approximation is only valid
close to α0, and also that we have no way of de-
termining the region in which this approximation
is valid.

We denote the eigenvector associated with the
smallest value of δ by un and the associated res-
onance value by µn = α0 + δ. Note that the
equation satisfied by un is

(K − α0M + C + Φ(α0))un

= (δM − δΦ′)un. (7)

5 Approximation of the Response

We can estimate the solution of equation (1) us-
ing the approximate resonances. The critical for-
mula is that the solution can be written as

ξ(α) =
∑

n

un

un.f

(α − µn)un. (M − Φ′)un

. (8)

6 Floating Elastic Plate

The two-dimensional floating elastic plate of fi-
nite length is the simplest and best-studied prob-
lem in hydroelasticity. Solutions in the frequency
domain were first presented by Meylan & Squire
(1994); Newman (1994). It is the most logical
place to start investigating the present theory.
We assume that the plate occupies the region
(−L,L) and that the water is of constant depth
h. The equations for a floating elastic plate are

∆φ = 0, −h < z < 0, (9a)

∂zφ = 0, z = −h, (9b)

ω2φ = ∂zφ, x /∈ (−L,L), z = 0, (9c)

iω
∞

∑

n=0

ξnwn = ∂zφ, x ∈ (−L,L), z = 0, (9d)

∞
∑

n=0

ξn

(

1 + βλ4

n

)

wn − ω2γ
∞

∑

n=0

ξnwn (9e)

= −iωφ, x ∈ (−L,L), z = 0, (9f)

where wn are the free modes of vibration of an
elastic beam. In this case the stiffness matrix is
given by

K = ⌈βλ4

n
⌋, (10)

where ⌈. . . ⌋ denotes a diagonal matrix. The mass
matrix is given by

M = γI, (11)



where I is the identity matrix. The hydrostatic
restoring matrix is given by

C = I. (12)

We do not discuss the calculation of Φ here.

7 Results

We present results for the case of a floating elas-
tic plate, with L = 5 and h = 2. We consider
four values for β and γ, β = γ = 1, β = γ = 0.5,
β = γ = 0.2, and β = γ = 0.1. Figure 1 shows
the reflection coefficient and the resonances for
these four cases, with × representing the approx-
imate position and ◦ representing the exact po-
sition of the resonances, calculated by a method
which we do not discuss here. We can see that the
approximate solution for the resonance is close to
exact resonance, except for the lowest resonances.
It is interesting to note that the resonances are
associated with a peak in the energy and also
with a zero in the reflection coefficient. No ex-
planation for the zero in reflection is known to the
authors. Also note there is not necessarily exact
matching between the zero in reflection and res-
onance. There is also a further resonances which
occurs for negative real part of α, which cannot
be found accurately by the approximate method
and this is not shown. The resonances have a
correspondence with the free vibrational modes
and the response is dominated by, but does not
consist solely of, this mode. The properties of
symmetry and anti-symmetry of the modes are
preserved by the resonances.

Figure 2 shows the potential energy in the
plate averaged over one period for the exact (solid
line) and approximate solution (dashed line) us-
ing equation (6). The energy is given by

∑

λ4

n
|ξn|

2. (13)

Note that there is no bending energy in the two
lowest modes (which are the rigid body modes)
and for this reason any errors in estimating these
modes are not apparent in this figure. It is clear
from this figure that the higher that β and γ are
the more accurate is the approximate solution,
and also that the approximate solution is more
accurate for higher frequencies.

8 Summary

We have presented a method to calculate the res-
onances for a floating body using the solution for

real frequencies. This method is applicable to any
floating body, however it seems likely that it will
be most effective for elastic bodies. We have pre-
sented a numerical investigation of this method
for the case of a two-dimensional floating plate
of negligible submergence (the simplest hydroe-
lastic problem). The results for this case are very
encouraging and we believe that the theory could
easily be extended to other elastic structures, es-
pecially to the hydroelastic response of very large
container ships which was the motivation for this
research.
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Figure 1: |R| versus α and position of the resonances (× approximate and ◦ exact) in the complex
plane. L = 5, h = 2, β = γ = 1 (a), β = γ = 0.5 (b), β = γ = 0.2 (c), and β = γ = 0.1 (d).
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Figure 2: Bending energy as a function of α for the exact solution (solid line) and the approximate
solution using equation (6). L = 5, h = 1, β = γ = 1 (a), β = γ = 0.5 (b), β = γ = 0.2 (c), and
β = γ = 0.1 (d).


