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Introduction

The paper deals with the evaluation of the linear hydrostatic restoring matrix for elastic body. In spite
of quite important work on the subject (eg see [1, 2, 3, 4, 5, 6, 7]), the problem still seems to not be fully
clear and different expressions proposed in the literature do not match each other!? On the other hand
the application of, what seems to be the correct method, leads to some strange results for the internal
loads!? The main purpose of the paper is to discuss and compare different methods.

Direct perturbation method

Before continuing, let us just recall the definition of the restoring coefficient which can be briefly stated
as the ratio in between the reaction force and the displacement which produces it when the body is
moved from initially equilibrated position in calm water. This means that the hydrostatic restoring will
be composed not only of the pure hydrostatic pressure part but from all the forces which participate to
the initial equilibrium of the body (gravity, concentrated external forces, ...) General situation is shown
in Figure 1 (bold letters are used to denote the vector quantities). The instantaneous position of one

Figure 1: Generalized body motion.

point on the body is described by the vector r and the corresponding position at rest by the vector R:

r = xi + yj + zk , R = Xi + Y j + Zk (1)

The displacement vector for mode j is described by the vector h
j :

hj = h
j
Xi + h

j
Y j + h

j
Zk (2)

where h
j
X , h

j
Y , h

j
Z are the arbitrary functions of X,Y,Z.

Within these notations, the following relation is valid:

r = R + hj (3)

We define the generalized hydrostatic pressure force, on mode i (note that the coefficient ̺g is omitted
throughout whole the paper):

F̃
H

ij = −

∫ ∫

S̃B

zh̃
i
ñd̃S (4)



where the tilde sign ”˜” denotes the instantaneous value of the corresponding quantity.
The final goal of the analysis is to extract, from the above equation, the leading order term with respect
to the small modal displacement hj . In order to do that, we need to rewrite the above expression at the
initial body position. We write:

F̃
H

ij = −

∫ ∫

SB+δSB

(Z + δZ)(hi + δhi)[ndS + δ(ndS)] (5)

where δ denotes the change of the corresponding quantity due to the body motion/distortion.
It can be shown that the integral over δSB is of higher order so that only the integral over the initial wetted
position SB remains. The change of each quantity can be obtained using the notion of the deformation
gradient [the subscript X means that the derivatives are to be performed with respect to the coordinate
system (X,Y,Z)]:
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(6)

The differential change of the different quantities become:

δZ = ∇X(Zk) · hj = h
j
Z , δhi = ∇Xhi

· hj , δ(ndS) = ∇Xhj n − (∇Xhj)T
· n (7)

where overscript T denotes the transpoze operation.
The final expression for the generalized restoring coefficient becomes:

CH
ij =

∫ ∫

SB

{

h
j
Zhi

· n + Z(∇Xhi
· hj) · n + Z(∇Xhj)hi

· n − Z[(∇Xhj)T
· n] · hi

}

dS (8)

By using the identity (∇XhjT
· n) · hi = (∇Xhj

· hi) · n the above expression can be rewritten as:

CH
ij =

∫ ∫

SB

{

Z[∇Xhjhi
· n + (∇Xhi

· hj
−∇Xhj

· hi) · n] + h
j
Zhin

}

dS (9)

Molin’s formulation

Molin’s [3] used quite different method involving the integral transformations in order to represent the
restoring in terms of the volume integrals. First we rewrite the general hydrostatic effort in the form:

F̃
H

ij =

∫ ∫

S̃B

zh̃
i
ñd̃S =

∫ ∫

S̃B+S̃F

zh̃
i
ñd̃S −

∫ ∫

S̃F

zh̃
i
ñd̃S = F̃

H1

ij + F̃
H2

ij (10)

where S̃F denotes the instantaneous waterline surface.

The first part of the generalized force F̃
H1

ij , is transformed into the volume integral:

F̃
H1

ij =

∫ ∫ ∫

ṼB

∇x(zhi)dṼ =

∫ ∫ ∫

ṼB

(z∇xhi + hi
z)dṼ (11)

In order to transform the above integral from the instantaneous position Ṽ (x, y, z) into the initial one
V (X,Y,Z), the following relations are used:

dṼ = (1 + ∇Xhj)dV , z = Z + h
j
Z , h̃

i
= hi + ∇Xhi

· hj (12)

∇xh̃
i
= ∇Xhi + hj

· ∇X(∇Xhi) , hi
z = hi

Z + hj
· ∇Xhi

Z (13)

After inserting the above expressions into (11), the following expression is obtained at leading order:

CH1
ij =

∫ ∫ ∫

VB

{

Z[∇Xhi
∇Xhj + hj

· ∇X(∇Xhi)] + h
j
Z∇Xhi + hi

Z∇Xhj + hj
· ∇Xhi

Z

}

dV (14)



At the same time, the leading order term of the second part of the generalized hydrostatic force is easily
obtained as:

CH2
ij = −

∫ ∫

SF

hi
Zh

j
ZdS (15)

Newman’s formulation

In Newman’s formulation [4], the restoring coefficient is defined by the following expression:

CH
ij =

∫ ∫

S̃B

zh̃
i
ñdS −

∫ ∫

SB

zhindS =

∫ ∫ ∫

Ω

∇X(Zhi)dΩ =

∫ ∫ ∫

Ω

(Z∇Xhi + hi
Z)dΩ (16)

where Ω denotes the volume in between the instantaneous wetted surface S̃B and the initial one SB .
Under the small displacement assumptions we can write dΩ = hjndS so that the final expression for the
restoring coefficient becomes:

CH
ij =

∫ ∫

SB

(Z∇Xhi + hi
Z)hjndS (17)

Equivalence of different expressions

Newman to Molin

In order to compare Newman’s formulation to Molin’s formulation, first we subdivide the expression (17)
in the following way:

CH
ij =

∫ ∫

SB

Z∇XhihjndS +

∫ ∫

SB

hi
ZhjndS = CHa

ij + CHb
ij (18)

The first part is now transformed into volume integral:

CHa
ij =

∫ ∫

SB+SF

Z∇XhihjndS =

∫ ∫ ∫

V

∇X(Z∇Xhihj)dV

=

∫ ∫ ∫

V

{

Z[∇Xhi
∇Xhj + hj

∇X(∇Xhi)] + h
j
Z∇Xhi

}

dV (19)

The second integral is transformed into:

CHb
ij =

∫ ∫

SB+SF

hi
ZhjndS −

∫ ∫

SF

hi
Zh

j
ZdS =

∫ ∫ ∫

V

∇X(hi
Zhj)dV −

∫ ∫

SF

hi
Zh

j
ZdS

=

∫ ∫ ∫

V

(hi
Z∇Xhj + ∇Xhi

Zhj)dV −

∫ ∫

SF

hi
Zh

j
ZdS (20)

It is now easy to see that CH
ij = CH1

ij + CH2
ij = CHa

ij + CHb
ij .

Direct to Molin

The original expression (9) is subdivided into two parts:

CH
ij =

∫ ∫

SB

Z[∇Xhjhi
· n + (∇Xhi

· hj
−∇Xhj

· hi) · n]dS +

∫ ∫

SB

h
j
ZhindS = CHc

ij + CHd
ij (21)

As in the previous section, the first integral is transformed into the volume integral:

CHc
ij =

∫ ∫ ∫

V

∇X

{

Z[∇Xhjhi
· n + (∇Xhi

· hj
−∇Xhj

· hi) · n]
}

dV (22)

After rearranging different terms, the above expression can be rewritten in the following form:

CHc
ij =

∫ ∫

SB+SF

{

Z[∇Xh
i
∇Xh

j + h
j
∇X(∇Xh

i)] + hi
Z∇Xh

j + h
j
∇Xhi

Z − hi∇Xh
j
Z

}

dV (23)



At the same time, the second term is rearranged into:

CHd
ij =

∫ ∫

SB+SF

h
j
ZhindS −

∫ ∫

SF

h
j
Zhi

ZdS =

∫ ∫ ∫

V

∇X(hj
Zhi)dV −

∫ ∫

SF

hi
Zh

j
ZdS

=

∫ ∫ ∫

V

(hj
Z∇Xhi + ∇Xh

j
Zhi)dV −

∫ ∫

SF

hi
Zh

j
ZdS (24)

By summing up the two terms we can easily show that CH
ij = CH1

ij + CH2
ij = CHa

ij + CHb
ij = CHc

ij + CHd
ij .

Huang & Riggs formulation

Apparently, the Huang & Riggs [5] formulation is the same as the direct approach except that the term:

δhi = ∇Xhi
· hj (25)

is omitted. This makes the Huang & Riggs formulation different from the others.

Discussions

The above expressions represents the hydrostatic pressure part only and the gravity related part should
be added in order to obtain the final expression for the restoring. This gravity related part should be the
same for all the approaches, and can be derived in the following form:

C
g
ij = g

∫ ∫ ∫

VB

(hj
∇X)hi

Zdm (26)

One possibility to check the validity of different formulations is to calculate the well known restoring
matrix for rigid body modes of motions. Indeed, the six rigid body modes of motion can be defined as:

h1 = i , h2 = j , h3 = k , h4 = i∧ (R∧RG) , h5 = j ∧ (R∧RG) , h6 = k∧ (R∧RG)
(27)

where RG denotes the vector position of the center of gravity.
When applying the above discussed formulations, to these modal functions, the classical restoring matrix
for rigid body is recovered by all the formulations except the one given by Huang & Riggs.
It is however not fully clear if the Huang & Riggs formulation should be compared directly to other for-
mulations, since their formulation includes also some other terms such as the internal geometric stiffness.
At the same time, the other formulations still have some problems in evaluating the internal loads!? All
this will be discussed more in details at the Workshop.
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