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The present note deals with the sloshing problem, two- and three-dimensional versions of which
describe free oscillations of water in an infinitely long canal of uniform cross-section and in a con-
tainer, respectively. The case of infinitely deep water is treated in both dimensions as well. Our aim
is to study the location of ‘high spots’ on the free surface for the fundamental mode in various water
domains. We recall that the free-surface elevation is proportional to the trace of mode’s velocity
potential taken on the undisturbed level, and so at every moment the location of high spots is deter-
mined by the projections on this level of trace’s maxima (defined up to a constant non-zero factor).
Moreover, both maxima and minima of the trace must be considered when a time-harmonic factor
(cosωt or sinωt, where ω is the radian frequency of water oscillations) is removed. Indeed, they
give the high spots during the complementary time intervals when this factor is taken into account.

The sloshing problem was the subject of a great number of studies (see [5] for a review). Among
recent works we mention the papers [7] and [8], where the question of simplicity of sloshing frequen-
cies was investigated along with some other properties of these frequencies and the corresponding
eigenfunctions which are either velocity potentials or stream functions describing free oscillation
modes. The present considerations essentially rely upon some results obtained in [7] and [8].

1 Two-dimensional problem for various water domains
Let an inviscid, incompressible, heavy fluid (water) occupy a canal; its cross-section W is assumed
to be a two-dimensional, bounded, simply connected domain without cusps on the piecewise smooth
boundary ∂W , which consists of the cross-sections of the free surface and of the bottom denoted by
F and B = ∂W \ F̄ , respectively. The former has a finite width and is represented by an interval
of the x-axis in appropriate Cartesian coordinates (x, y) with the y-axis directed upwards; the latter
is the union of open arcs that lie in the half-plane y < 0 and are complemented by the corner points
(if there are any) connecting these arcs. The surface tension is neglected and the water motion is
supposed to be two-dimensional, irrotational, and of small-amplitude. These assumptions lead to
the following boundary value problem for the velocity potential u(x, y) with a time-harmonic factor
removed:

uxx + uyy = 0 in W, uy = νu on F, ∂u/∂n = 0 on B,
∫

F
u(x, 0) dx = 0. (1)

The last condition is imposed to exclude the zero eigenvalue; the spectral parameter ν is equal to
ω2/g, where g is the acceleration due to gravity. Generally speaking, the boundary ∂W has corner
points, and so the condition

∫
W |∇u|2 dxdy < ∞ must be added to relations (1) to avoid strong

singularities near these points.
The formulated problem has a discrete spectrum; that is, there exists a sequence of eigenvalues

0 < ν1 < ν2 ≤ ν3 ≤ . . . ≤ νn ≤ . . ., each having a finite multiplicity equal to the number of
repetitions. Moreover, νn →∞ as n →∞, and the fundamental eigenvalue ν1 is simple (ν1 < ν2).
The latter fact is proved in [7] along with the assertion that the eigenfunction u1 has only one nodal
line connecting F and B̄. The proofs are based on a non-local variational principle for another
equivalent statement of the problem, in which the following conditions

vxx + vyy = 0 in W, −vxx = νvy on F, v = 0 on B (2)

are used instead of (1). Here v is the conjugate to u harmonic function (stream function). It is
possible to choose v1 so that it is positive on W ∪ F and this fact plays an essential role in proving
the following assertion that describes the location of high spots for the fundamental sloshing mode.



u1

x

Figure 1: The trace u1(x, 0) for the ice-fishing problem with b = 0; x ∈ [−0.99, 0.99].

PROPOSITION 1.1. Let B̄ be the graph of a function given on F̄ . Then the traces of u1 on F̄ and
B̄ are monotonic functions (say, both increasing) of the corresponding arguments which are x on
F̄ and the arc length s measured form the left end-point on B̄. Moreover, max(x,y)∈W̄ u1(x, y) and
min(x,y)∈W̄ u1(x, y) are attained at the end-points of F .

COROLLARY 1.2. The trace of u1 is monotonically increasing on F if and only if the trace of v1 is
a concave function on F attaining its maximum at the end-point of the nodal line of u1.

By the definition of high spots, each end-point of F gives the high spot of the free surface for the
fundamental mode during the time intervals defined by a time-harmonic factor. The fact that high
spots are the end-points of F resembles the so-called ‘hot spots’ conjecture which was formulated
by Rauch in 1974 (see, e.g., [1]). The conjecture says that any eigenfunction corresponding to the
smallest non-zero eigenvalue of the Neumann Laplacian in a domain D ⊂ IRd attains its maximum
and minimum values on ∂D. During the past decade, the hot spots conjecture has been intensively
studied (see [3] for a survey). It was proved for some classes of two- and three-dimensional domains,
but is still an open question for an arbitrary convex two-dimensional domain. On the other hand,
there exists a multiply connected domain that serves as a counterexample to the conjecture (see, e.g.,
[4]). We show (see Proposition 2.1 below) that the hot spots conjecture is equivalent to the question
about high spots for the ‘glass’ sloshing problem.

Let us turn to the so-called ice-fishing problem (also referred to as the infinite-dock problem). For
infinitely deep water when the cross-section of the water domain is W = IR2

− = {x ∈ IR, y < 0},
we consider F = {b < |x| < b + 1, y = 0}, where b is a non-negative parameter. For b = 0 the
problem coincides with that for F = {|x| < 1, y = 0}. The fact that the total length of the free
surface is normalised to be equal to two is not a restriction in view of domain similarity. Again the
condition

∫
IR2
−
|∇u|2 dxdy <∞ must be added to relations (1).

PROPOSITION 1.3. Let b either vanish or be sufficiently large. Then the points, where the funda-
mental eigenfunction of the ice-fishing problem attains its maximum and minimum values, are inner
points of F symmetric with respect to zero.

The case b = 0 is illustrated in Figure 1 and the proof for this case is based on the asymptotic for-
mula describing the behaviour of u1 in a neighbourhood of the dock tip (1, 0) (see [8], formula 2.1).
For sufficiently large b, the proof follows from the asymptotic formula valid for u1(x, 0) as b → ∞
(see [8], Theorem 3.1).

Comparing the results of Propositions 1.1 and 1.3, we are in a position to formulate the following

CONJECTURE 1.4. LetW be a bounded domain with smooth B such that at least one angle between
B and F is greater than π/2. Then the fundamental eigenfunction u1 attains at least one of its
extremum values at an inner point of F .

2 Proof of Proposition 1.1 (an outline)
Our proof of Proposition 1.1 is based on two assertions that involve another mixed Steklov problem
that distinguishes from the sloshing problem only by the boundary condition on B, namely:

wxx + wyy = 0 in W, wy = λw on F, w = 0 on B. (3)

This problem also has discrete spectrum 0 < λ1 < λ2 ≤ . . . ≤ λn ≤ . . . such that λn → ∞ as
n→∞, and the eigenvalue λ1 is simple. The corresponding eigenfunctionswn, n = 1, 2, . . ., belong



to the subspace H1
B(W ) of the Sobolev space H1(W ) (H1

B(W ) consists of functions in H1(W ) that
vanish on B); the traces wn(x, 0) form an orthogonal basis in L2(F ). Arguing in the same way as in
the proof of Theorem 3.8, [2], one arrives at the following domain monotonicity property similar to
that holding for the fundamental eigenvalue of the Dirichlet Laplacian.

LEMMA 2.1. Let R be a simply connected subdomain of W such that R 6= W and F ∩ ∂R is an
open non-empty set. Then λR1 > λW1 , where the superscript indicates the domain in which problem
(3) is considered.

Combining this lemma and the well-known monotonicity property valid for the fundamental
eigenvalue of the sloshing problem (see, e.g., [9]), one obtains the first assertion of

PROPOSITION 2.2. Let W be confined to the semi-strip {|x| < a, y < 0}. Then ν1 ≤ λ1 and the
equality holds only for the infinitely deep rectangular domain {|x| < a,−∞ < y < 0}.

Note that for the infinitely deep rectangular domain we have:

ν1 = λ1 =
π

2a
, whereas u1(x, y) = sin

πx

2a
exp

πy

2a
and w1(x, y) = cos

πx

2a
exp

πy

2a
,

which proves the second assertion.

Proof of Proposition 1.1. For the sake of brevity we omit the subscript 1 at u and v which are the
fundamental eigenfunctions of problems (1) and (2), respectively. Since v is positive on W ∪ F and
B is the graph of a function given on F , we have that vy ≥ 0 on B. In view of the second boundary
condition in problem (1), this implies ux = ∂u

∂t
tx ≥ 0 onB, where ∂

∂t
denotes the tangential derivative

and tx is the projection of the unit tangent on the x-axis (the direction of tangent coincide with the
increasing of the arc length s on B). Note that tx is non-negative because B is the graph, and so the
same is true for ∂u

∂t
, which proves the assertion that the trace of u increases on B.

In order to show that ux ≥ 0 on F , which proves the first assertion, we assume the contrary, i.e.,
that ux changes sign at some inner point of F . Then there exists an open nonempty subset of W
such that ux < 0 on it; let R be a connected component of this subset. Note that ux = 0 on ∂R ∩ B
because ux ≥ 0 on B and ux < 0 on R. It follows that ux satisfies the boundary value problem
(3) on the domain R. Moreover, λR1 = νW1 in the second condition (3) for ux, which one obtains
differentiating the second condition (1) with respect to x. By Lemma 2.1 we get λW1 < λR1 = νW1
which contradicts Proposition 2.2 since W is not the infinitely deep rectangular domain. Hence ux
does not change sign on F .

3 Three-dimensional problem for various water domains
We consider two types of water domains. A domain of the first type is

W = {x = (x1, x2) ∈ D, y ∈ (−d, 0)},
where D is a bounded two-dimensional domain and d ∈ (0,∞]; i.e., the depth of container is
constant and its walls are vertical. In this case F = D × {y = 0}, B = ∂W \ F̄ , and the sloshing
problem is referred to as the ‘glass’ problem. The domain of the second type is

W = IR3
− = {x = (x1, x2) ∈ IR2, y ∈ (−∞, 0)}

with F = {r < 1, y = 0}, r2 = x2
1 + x2

2, and B = ∂IR3
− \ F̄ . This problem is called the ice-fishing

problem (the fact that hole’s radius is equal to one is not a restriction in view of domain similarity).
The Laplace equation in W takes the form ∇2

xu + uyy = 0, where ∇x = (∂/∂x1, ∂/∂x2). The last
three conditions (1) must hold for both problems as well as the condition

∫
W |∇u|2 dxdy <∞.

Separating the y-variable in the glass problem as follows: u(x, y) = φ(x) cosh k(y + d) for
d <∞ and φ(x) eky when d = ∞, one obtains that φ is an eigenfunction of the problem:

∇2
xφ+ k2φ = 0 in D, ∂φ/∂nx = 0 on ∂D,

∫

D
φ dx = 0,



where ν = k tanh kd for d <∞ and ν = k when d = ∞. Hence we arrive at

PROPOSITION 2.1. A point (x, 0) ∈ ∂F is a high spot for the glass problem if and only if x ∈ ∂D
is a hot spot for the Neumann Laplacian in D.

Let us turn to the ice-fishing problem investigated in [6]. In particular, it was proved that the
eigenfunctions ψ1(r, y)

xi

r
, i = 1, 2, correspond to the fundamental eigenvalue ν1. Here

ψ1(r, y) = ν1

∫ 1

0
ψ1(s, 0) s ds

∫ ∞

0
J1(kr) J1(ks) eky dk,

and the trace of ψ1 on F is the fundamental eigenfunction of

ψ(r, 0) = ν
∫ 1

0
ψ(s, 0) s I(r, s) ds, where I(r, s) =

∫ ∞

0
J1(kr) J1(ks) dk, r ∈ (0, 1),

and J1 is the Bessel function. The fundamental eigenvalue of the positive kernel I(r, s) is also equal
to ν1. Choosing ψ1(r, 0) to be positive for r ∈ (0, 1) (it is clear that ψ1(0, 0) = 0 because J1(0) = 0)
and such that ψ1(1, 0) = 1, we have that the asymptotic formula (see Proposition 4, [6]):

ψ1(r, 0) = 1 +
ν1

π
(r − 1) log |r − 1|+O (|r − 1|)

is valid as r → 1. This formula can be differentiated, thus giving that ∂ψ1

∂r
(r, 0) → −∞ as r → 1.

Now taking into account the formula for eigenfunctions of the ice-fishing problem, we arrive at

PROPOSITION 2.2. Both fundamental eigenfunctions of the ice-fishing problem for a single circular
hole attain their maximum and minimum values at inner points of F .

The simplest way to generalise Proposition 1.1 to the three-dimensional case is to consider a
domain W with rotational symmetry (a ‘wine glass’), in which case one may expect the following
conjecture to be true.

CONJECTURE 2.3. Let a disc F lying in the (x1, x2)-plane and centred at the origin be the free
surface of a water domain W such that its bottom B is the graph of a rotationally invariant, negative
C2-function given on F . If B forms a non-zero angle with F , then any eigenfunction corresponding
to the fundamental eigenvalue attains its minimum and maximum values on ∂F .
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