
Linear and Nonlinear Springing Analyses in Time Domain 
using a Fully Coupled BEM-FEM

Yooil Kim, Kyong-Hwan Kim, Yonghwan Kim
Seoul National University, Seoul, Korea

1. Introduction
Global hydroelasticity of modern merchant ship is gathering a lot of attention due to the rising concerns 
about its negative impact on design of sound structure especially in terms of unexpected increase of 
design load as well as fatigue loading. Recent experiences from a real ship in operation tell that cracks are 
observed at bracket toe in deck longitudinal in way of transverse bulkhead after one year of operation in 
the North Atlantic (Storhaug, 2007). The ship was made of class-certified high tensile steels, HTS36, 
meeting IACS’s rule requirements. Based on the measurement through onboard hull monitoring system, it 
was concluded that these cracks were caused by continuous wave induced vibration. In addition to the 
fatigue damage, this resonant vibration as well as transient vibration due to bow slamming also has 
significant impact on the increase of extreme wave bending moment threatening the safety level of 
seagoing vessels. However, current rule requirements do not take into account this type of vibration 
induced fatigue damage and extreme wave load in ship design leaving potential catastrophic failures 
ahead of us. 
In this study, a new approach which combines both BEM and FEM directly in time domain is taken. What 
distinguishes the current time domain approach from previously studies is that current approach handles 
BEM and FEM in time domain directly without relying on the inverse Fourier transform of frequency 
domain solution introduced by many others so far. Moreover, the solution of finite element equation is 
sought by using direct integration method, not by modal decomposition method mentioned above. The 
most popularly used direct integration scheme, Newmark-β method, which is a unconditionally stable 
implicit method of the second-order accuracy is used to discretize finite element equation in time.

2. Theoretical Background
For the solution of fluid part, a time-domain Rankine panel method is used. In this method, solution 
variables such as potential and its normal derivatives etc., are discretized in space by using bi-quadratic 
B-spline function, so that continuity up to its second derivatives are guaranteed across each panel. 
Linearized body boundary condition derived by Ogilvie and Tuck(1969) is applied to flexible body by 
using modified Nakos approach. In doing so, the approach introduced by Nakos, where Stokes theorem is 
used for the calculation of second derivative of basis potential in m-terms, is modified to take into 
account the arbitrary deformation pattern of the flexible body. Eqn(1) shows Stokes theorem applied to 
source term of the integral equation. M-term in Eqn(1) contains second derivative of basis potential and is 
converted into first derivative as shown.
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This original Nakos approach was slightly modified in order to apply it to flexible body case. Firstly, 
whole ship is artificially divided into several segments along it length. Then, an assumption that strain 
tensor inside each segment is neglibly small so that each segment can be treated like rigid one was
introduced in this stage. This assumption is reasonable because, first of all, the length of segment is 
normally chosen to be very small. Moreover, it is believed to be true that deformation gradient inside each 
segment would be very small thanks to the relatively high stiffness of general ship structure. Eqn(2)
shows the process through which source term of the integral equation is transformed into the one ready to 
use Stokes theorem.
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Finally, after applying Stokes theorem mentioned above, m-term which is present in the source term can 
be expressed in terms of first derivative of basis potential as the summation over the whole segment.
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Less tight approach below weak scatterer is weakly nonlinear approach, which is tried in this study. In 
this approach hydrodynamic pressure, both diffraction and radiation related, is evaluated based on linear 
theory, but both Froude-Krylov and restoring pressure is evaluated at body exact position. Calculation of 
these two force components is rather straightforward once body motion is given. For this, additional 
nonlinear mesh on which nonlinear Froude-Krylov and restoring pressure is to be calculated, is required. 
Deformation and motion of the floating body is assumed to be small within weakly nonlinear approach.
Froude-Krylov(FK) pressure on dry surface under mean water line level is forced to be zero, while the 
one on wet surface above mean water line is obtained by using Taylor expansion from mean water line.
Eqn(4) shows nodal forces acting in vertical upward direction induced by this body-exact FK pressure. 
FK pressure without prime indicates the value on mean-body surface, and with prime is the values on 
exact body surface. Since basis potential is defined on the mean-body surface, coupled terms between 
basis potential and wave potential have to stay on the mean body even in case of nonlinear formulation.
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Body-exact restoring pressure can be evaluated by subtracting hydrostatic pressure on initial mean body 
position from that at current exact body position. Calculation of nodal forces acting on beam nodes can be 
done in similar way of Eqn(4).
For the solution of structural part, Vlasov beam theory is followed which is able to take into account the 
effect of warping distortion. The effect of warping becomes very important when the cross section of the 
ship is thin-walled-open one, which is the case of modern large sized container carriers. Also, the effect of 
coupling between horizontal bending and torsion which is caused by the gap between neutral axis and 
shear center locations, is taken into account. These two typical behaviors of thin-walled-open-sectioned 
beam are critical in that the lowest natural frequency of these container carriers is torsional one and the 
second lowest one is coupled horizontal bending and torsion. This, in turns, means that those two 
vibration modes are most likely excited by incoming waves whose frequency level sits right on the spot 
where the energy of ocean wave is highly packed.
To obtain the solution from above mentioned two coupled equations, an iterative method is used where 
the solutions of two field equations are exchanged between them until converged solution is obtained. 
Fixed-point iteration with relaxation method is used to accelerate convergence rate, and the modified
Aitken’s δ2 process is used for the determination of optimum relaxation parameter. In seeking the solution 
of structural FE equation, both modal superposition method and direct integration method are used. In 
modal superposition method, system equations are treated in modal space whose basis vectors are 
structure’s mode shapes. Therefore, all physical quantities of both fluid and structure domain are 
projected to this new space through the inner product of related vector and mode shape. In direct 
integration approach, spatially-discretized structural FE equation is directly discretized in time domain by 



using Newmark-㬠 method which is second order unconditionally stable time marching scheme popularly 
used in structure community.

3. Analysis Results
Some validation works have been done on flexible barge model. Computational results were compared 
with experimental data which have been obtained by Remy et al., and raw data was provided by them
through private communication. Free-decay test as well as the response under wave excitation on 
stationary flexible barge was carried out. Details of this can be found in Kim et.al.(2008).
To check the applicability of developed computer program, a more realistic case is handled in this study. 
Artificial flexible S175 model with open cross section was created with realistic sectional properties to 
see the response under oblique wave with forward speed. The second moment of inertia in both vertical 
and horizontal directions was set to be 63.2 and 178 m4, respectively. Warping constant was set to be 5660 
m6, and St.Venant’s torsional constant to be 1.36 m4. The distance from neutral axis to shear center, which 
is located far below hull bottom, was 14.7 m. Young’s modulus was set to be 200 GPa and Poisson ratio 
0.3. 
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  (a) VBM RAO at L/2   (b) HBM RAO at L/2   (c) TM RAO at L/4
Fig.1 Sectional load RAO (Fn=0.275, β=120o)

Fig.1 shows sectional load RAO when wave heading angle is 120o. Vertical 2-node resonance vibration 
takes place around 2.2 rad/sec. For horizontal bending moment shown in Fig.1(b), resonance vibration 
occurs at 1.6 rad/sec, where torsional moment at L/4 peaks as well. This means that coupled horizontal 
bending and torsion is taking place at this frequency level. Torsional moment at midship has its peak at 
0.95 rad/sec, which corresponds to twisting vibration mode. Fig.2(a) shows hull deformation when the 
body goes through twisting mode resonant vibration under 120o heading angle. Solid line without fill is 
deformed configuration, so that vibration mode can be seen clearly when compared with its original 
configuration which is filled one. It can be seen that bow and stern rotates in opposite direction while the 
midship part remains un-rotated. Rather straight keel line vividly shows that horizontal bending is almost 
absent in this mode. This explains well the presence of sharp peak at this frequency level in Fig.1(c). 
Little difference of horizontal bending moment between rigid and flexible body in Fig.1(b) demonstrates 
that vibration induced horizontal bending is almost negligible. 

 
(a) ω=0.95, Fn=0.275, β=120o   (b) ω=1.6, Fn=0.275, β=120o

Fig.2 Hull deformation (submerged part only)

Fig.2(b) is the case when wave frequency goes up to 1.6 rad/sec, where coupled horizontal bending and 
torsion is taking place. Careful attention to the deformed configuration in Fig.2(b) tells that the body is 
exposed to horizontal bending together with torsion. In this case, bow and stern rotates in same direction 



whereas midship in opposite direction indicating maximum torsion will be at quarter point, that is to say, 
both at 3L/4 and L/4. Curved keel line proves that horizontal bending is significant in this mode. It should 
be noted that deformed shape in Fig. is highly exaggerated because, in reality, deformation magnitude is 
not visibly big.
Fig.3 shows the comparison of nonlinear vertical bending moment between rigid and flexible bodies
when wave frequencies are 0.5 and 1.67 rad/sec respectively. The former one corresponds to the heave 
resonance frequency of the rigid body, and the latter one to two node vertical bending resonance 
frequency. It can be seen that flexible resonance frequency component is present when wave frequency is 
0.5 rad/sec together with first and second harmonic components. This is because of nonlinearity that 
restoring force holds implicitly containing all higher order frequency component. When wave frequency 
is 1.67 rad/sec, vertical bending moment of rigid body becomes very small, as is understandable because 
wave length is too small in this frequency level. However, when body becomes flexible under same wave 
frequency, vertical bending moment turned out to be quite large thanks to the resonance between 
excitation and flexible hull girder response.  

   (a) VBM at L/2 (ω=0.5)           (b) VBM at L/2 (ω=1.67)

Fig.3 Nonlinear VBM comparison between rigid and flexible body (Fn=0.275, β=180o, A=3m)

4. Conclusions
Steady-unsteady coupling term of flexible body is successfully incorporated in forward speed case by 
using modified Nakos approach, so that application was extended to S175 with scaled down structural 
properties. As a results of it, typical behavior of container carrier came out, that is to say, twisting and 
coupled horizontal bending and torsion turned out to be the lowest two vibration modes. Weakly 
nonlinear approach where body exact restoring pressure and Froude-Krylov pressure are taken into 
account, was tried ending up with highly oscillatory response in wave frequency regime.
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