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Initial stage of a compressible liquid jet impact onto a corrugated elastic plate with account for
air trapping and fluid aeration between the corrugations is studied. The jet head is assumed flat and
parallel to the plate before the impact. The corrugations are modeled as rigid plates perpendicular to
the surface of the main structure. The jet width is greater than the distance between two corrugations.
The jet head closes the air cavity between two corrugations and compresses it before the fluid comes
in contact with the plate outside the corrugation region. We assume that the air cavity breaks into a
cloud of bubbles before the fluid reaches the elastic plate. This implies that in the present model the
fluid between the two corrugations is mixed with the air without increase of the local pressure. Within
this assumption the impact occurs at the same time instant between the corrugations and outside them
but the fluid is aerated between the corrugations and does not contain air bubbles in the main part of
the jet. We shall determine elastic deflections of the plate and the bending stresses in the plate due to
the jet impact with account for presence of the aerated fluid between the corrugations.

In the present model we assume that (1) the corrugations do not move during the impact stage;
(2) the fluid is uniformly mixed with the air between the corrugations; (3) air fraction in the aerated
region is given; (4) the distribution of the hydrodynamic pressure in the aerated fluid is described by
the acoustic theory with reduced sound speed and the density of the air/fluid mixture. Only symmetric
configuration is considered in this study.

Figure 1. Figure 2.

The hydrodynamic part of the problem is solved by the domain decomposition method. For
symmetric configuration three domains are distinguished (see Figure 1). Velocity potentials in each
sub-domain are obtained by normal mode method. The matching conditions on the interfaces between
these sub-domains and the boundary condition on the elastic plate provide an infinite system of integral
and differential equations with respect to unknown time-dependent principal coordinates of the plate
deflection and shapes of the interfaces between the sub-domains.

Formulation of the problem

Two-dimensional unsteady problem of compressible jet impact onto a corrugated elastic plate is
considered. We assume that maximum bending stresses in the plate occur at the early stage of the
impact, when displacements of liquid particles are small and, therefore, equations of motion and the
boundary conditions can be linearized around the solution representing the uniform jet flow before the
impact.

The plate is modeled as a simply supported Euler beam. The length of the plate is 2L′ and the
plate thickness is hb. Corrugations are modeled as rigid plates of length d′. The distance between two
corrugations is 2A′. The jet of width 2H approaches the corrugated plate from the right (see Figure
1) with the velocity V . The flat head of the jet first touches the edges of the corrugation plates and
continue to move towards the main structure. The air trapped between two corrugations is assumed
to be well mixed with the fluid by the time instant, t′ = 0, when the flat jet head touches the plate
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outside the corrugations. We assume that the mixing process does not increase the pressure between
the corrugations (region 1 in Figure 1) before the impact instant t′ = 0.

The fluid in the jet (regions 2 and 3) is assumed ideal and weakly compressible. Gravity and surface
tension effects are not taken into account. The aerated fluid in region 1 is modeled as a fictitious
continuum medium with density ρa and sound speed ca being reduced compared with the density ρ0

and the sound speed c0 in the main jet regions 2 and 3.
Within the linear theory, which is valid during the initial impact stage of the jet interaction with

the plate, the fluid flow is governed by the wave equation, while the response of the plate is governed by
the classical linear dynamical plate equation. The coupling between the fluid flow in different regions
and the plate deflection is taken into account through the dynamic and kinematic conditions imposed
on the wetted part of the plate. Deformations of the jet free surface are neglected. The boundary
conditions are linearized and imposed on the initial surface of the jet.

The problem is considered in non-dimensional variables, where the half of jet width H is taken as
the length scale, the ratio H/c0 as the time scale, jet speed V the velocity scale, the "water hammer"
pressure ρ0c0V as the pressure scale, the product V H as the scale of the velocity potential of the flow
and HV/c0 as the scale of plate deflection. Here Oxy is the Cartesian coordinate system with the plate
being in the plane x = 0 (see Fig. 2) and w(y, t) is non-dimensional deflection of the elastic plate.

In the non-dimensional variables the liquid flow after the impact instant, t > 0, is described by the
total velocity potential −x+ϕ(x, y, t), where ϕ is the disturbed potential which satisfies the following
equations and boundary conditions

ϕtt = ∇2ϕ (Ω2,3), ϕtt = c2∇2ϕ (Ω1) (1)

ϕx = 1 − wt(y, t), (x = 0, −1 < y < 1) (2)

ϕ = 0, (x > 0, y = ±1) (3)

ϕy = 0, (0 < x < d, y = ±A) (4)

γϕ(d− 0, y, t) = ϕ(d+ 0, y, t), ϕx(d± 0, y, t) = ηt (|y| < A) (5)

αwtt + βwyyyy =

{

−ϕt (A < |y| < 1)
−γϕt (|y| < A)

(6)

w = wyy = 0 (y = ±L) (7)

ϕ = 0, ϕt = 0, w = wt = 0 (t = 0)

where

γ =
ρa

ρ0
, c =

ca
c0

α =
ρbhb

ρ0H
, β =

EJ

ρ0c20H
3

are non-dimensional parameters of the problem.
The coupled problem (1)-(7) is solved by the normal mode method, which is applied to both the

hydrodynamic problem (1)-(5) and the structural problem (6)-(7). This method was successfully used
in the problem of homogeneous jet impact onto elastic plate (Korobkin, Khabakhpasheva, Wu 2008).
In the present problem the fluid is non-homogeneous but only between the corrugations.

The plate deflection is sought in the form

w(y, t) =
∞
∑

n=1

an(t)ψ(pl)
n (y), (8)

where the functions ψpl
n (y) are non-trivial and orthonormal solutions of the eigen-value problem

ψpl
n yyyy = λ4

nψ
pl
n (−L < y < L), ψ(pl)

n = ψ(pl)
n yy = 0 (y = ±L),

and λn are the corresponding eigenvalues. The principal coordinates an(t) satisfy the following system
of equations

αän + βλ4
nan = −2

1
∫

A

ϕt(0, y, t) ψ
(pl)
n (y) dy − 2γ

A
∫

0

ϕt(0, y, t) ψ
(pl)
n (y) dy. (9)
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In order to determine the velocity potentials in each sub-domain, we introduce two new unknown
functions

ϕx(d, y, t) = f(y, t) =
∞
∑

m=1

fm(t)ψ(1)
m (y) (|y| < A),

ϕx(d, y, t) = g(y, t) =
∞
∑

m=1

gm(t)ψ(2)
m (y) (A < |y| < 1),

where {ψ
(1)
m (y)}∞m=1 and {ψ

(2)
m (y)}∞m=1 are complete systems of orthonormal functions in the regions 1

and 2, respectively.
Equations (9) and the conditions on the interface x = d provide the system of ordinary differential

and integral equations:

ḃn = −βλ4
nan, αȧn +

∞
∑

m=1

t
∫

0

ȧm(τ)Snm(t− τ)dτ = bn(t) + Tn(t)− (10, 11)

−
∞
∑

m=1

B(2)
mn

t
∫

0

gm(τ)p(2b)
m (t− τ)dτ − γ

∞
∑

m=1

B(1)
mn

t
∫

0

fm(τ)p(1b)
m (t− τ)dτ

γ

t
∫

0

fk(τ)p
(1)
k (t− τ)dτ +

∞
∑

n=1

t
∫

0

fn(τ)P
(13)
kn (t− τ)dτ +

∞
∑

n=1

t
∫

0

gn(τ)P
(12)
kn (t− τ)dτ =

= γe
(1)
k

t
∫

0

p
(1b)
k (τ)dτ − γ

∞
∑

n=1

B
(1)
kn

t
∫

0

ȧn(τ)p
(1b)
k (t− τ)dτ (12)

t
∫

0

gk(τ)p
(2)
k (t− τ)dτ +

∞
∑

n=1

t
∫

0

fn(τ)P
(12)
nk (t− τ)dτ +

∞
∑

n=1

t
∫

0

gn(τ)P
(23)
kn (t− τ)dτ =

= e
(2)
k

t
∫

0

p
(2b)
k (τ)dτ −

∞
∑

n=1

B
(2)
kn

t
∫

0

ȧn(τ)p
(2b)
k (t− τ)dτ. (13)

We need to find the solution of this system subject to the initial conditions

a(0) = 0, ȧ(0) = 0, b(0) = 0, fk(t) ≡ 0 gk(t) ≡ 0 (t < d). (14)

Here bn(t) are auxiliary functions. The vector- and matrix-functions Tn(t), Snk(t), P
(13)
nk (t), P

(12)
nk (t),

P
(23)
nk (t), p

(1)
m (t), p

(b1)
m (t), p

(2)
m (t), p

(b2)
m (t) depend only on time and the impact configuration.

This system is truncated and solved numerically. A time stepping method based on the Runge-
Kutta scheme is used for the numerical integration of the system. The integrals in (11) are subdivided
into two integrals along the intervals [0, t−∆t/2] and [t−∆t/2, t]. The first integral is evaluated by the
trapezoidal rule with the integration step equal to ∆t/2. The integral over the interval [t− ∆t/2, t] is
computed by using quadratic approximation of the integrand on the interval [t−∆t, t]. The integrals in

(12-13) are evaluated by the rectangle rule because the functions p
(1)
1 (t) and p

(b1)
1 (t) are discontinuous.

Numerical tests revealed that more than 10 modes are required to evaluate the functions f(y, t) and
g(y, t) with appropriate accuracy. However, accurate values of these functions are not very important
if we are concerned with the elastic plate deflections. It was found that 5 modes in the expansions of
these functions are needed for convergence of the numerical results in terms of the elastic deflections.
Calculations were performed with 5, 10, 15 and 20 modes in these expansions.

Numerical results

Effect of corrugations on elastic vibrations of the plate is investigated. It is show that both the
position and length of the corrugations matter. The deflections at the center of the plate (in cm) are
shown in Figures 3-6 as functions of the non-dimensional time. Results are obtained for the plate length
2L′ = 1 m, the plate thickness h′p = 2 cm and the jet width 2H = 80 cm. The plate is made of steel

with E = 21 × 1010 N/m2, ρp = 7875 kg/m3, ν = 0.3. In the main part of water jet (regions Ω2, Ω3),
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c0 = 1500 m/s, ρ = 1000 kg/m3, and in the region Ω1 of aerated fluid, c0 = 500 m/s, ρ = 900 kg/m3.
Calculations were performed for the initial stage of the impact, duration of which is approximately
equal to the quarter of the first (main) period of the plate vibration in the air. It is seen that the
maximum values of the plate deflections are achieved at the time interval 25 < t < 35.

Figures 3 and 4 present time evolutions of the plate deflections at the centre of the plate for
different distances between the corrugations. The length of the corrugations is 5 cm for these figures.
The fluid between the corrugations is aerated in figure 4 and is not aerated in figure 3. In both cases
the deflections increase with increase of the distance between the corrugations. Aeration of the fluid
between the corrugations gives rise to high frequency oscillations of the deflections.

Influence of the length of corrugations on the plate deflections is illustrated by Figures 5 and 6,
where A = 0.2 m. The fluid between the corrugations is aerated in figure 6 and is not aerated in
figure 5. In both cases, the longer the corrugations, the higher the plate deflections. It is seen that high
frequency vibrations are typical for the problem of aerated fluid between the corrugations. Period of
these vibrations increases with the corrugation length d.

Comparing the plate deflections obtained in the problems of corrugated plate impacts, we conclude
that the period of plate vibration is longer if the plate is corrugated. Therefore, the shape of corrugations
and aeration of the fluid between them are important in hydroelastic response of an elastic plate to
liquid impact. High-frequency vibrations of the plate deflection in the case of aerated fluid indicate
that the bending stresses are higher than for a non-aerated fluid and that the fatigue of the plate may
be expected.

Figure 3. Figure 4.

Figure 5. Figure 6.
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