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SUMMARY
The air entrainment and the degassing process in breaking waves is investigated. The flow generated by the breaking
of free–surface waves of different initial steepnesses is simulated numerically, through a two-fluids Navier-Stokes solver
combined with a Level-Set technique for the interface capturing. The flow is assumed two-dimensional. The evolution of
periodic wave trains of different initial steepness is considered. For large initial steepnesses the breaking is of the plunging
type and leads to the entrappment of large air cavities, area of which is found to scale as the steepness to the power seven.
The fragmentation process of the large air cavities is analysed and quantitative estimates of the amount of air entrapped
by the breaking and of the degassing process are provided.

1. INTRODUCTION

Breaking of ocean waves is an important mechanism for
heat and gas transfer between air and water. The break-
ing of free–surface waves is characterized by a broad range
of scales. Large scale breaking waves are characterized by
strong turbulence with a significant amount of drops, spray
and bubbles about the breaker front (whitecaps). At the
shortest scales, the stabilizing actions of gravity and sur-
face tension dominate over the disrupting effect of the tur-
bulence. The development of the plunging jet is suppressed
and only a small amount of air, if any, is entrained (Broc-
chini and Peregrine, 2001).

In Lamarre and Melville (1991) it was shown that the en-
trainment of air plays a rather important role on the energy
dissipation. Through measurements of the void fraction,
they showed that a large portion of the energy dissipated
by the breaking, between thirty to fifty per cent, is spent
against buoyancy in entrapping air bubbles. After the first
plunging event, the large air cavity entrapped is first con-
vected downward and then it is squeezed and fragmented
into smaller bubble. The fragmentation process induces a
strong vorticity field which rapidly dissipates the potential
energy than has been spent in the entrappment and down-
ward convection of the cavity. A similar experimental in-
vestigation was recently done by Blenkinsopp and Chap-
lin (2007). Also in this case it was found that, for strong
plunging breaking, at least fourteen per cent of the energy
dissipated by the breaking is spent in entraining air and
generating splash. The bubble distribution and the frag-
mentation process of the air cavity entrapped by breaking
waves were investigated by Deane and Stokes (2002). They
showed that the fragmentation process governs the bubble
size distribution up to bubbles larger than 1 mm. Bubbles
smaller than that size are stabilized by surface tension forces
and do not fragment further.

In this paper the breaking of wave trains with different
initial steepness are simulated numerically. The amount of
air entrapped by the breaking process is quantitatively eval-
uated along with the degassing phase. Results are analysed
together with the effects of the numerical scheme.

2. NUMERICAL MODEL

The unsteady two-fluids flow of air and water induced by

the breaking of free–surface waves is approximated as that
of a single incompressible fluid whose density and viscosity
vary smoothly across the interface. The problem is governed
by the Navier-Stokes equations
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where ρ and µ are the local values of density and dynamic
viscosity, respectively. In equation (1) p is the pressure, f
denotes the mass forces, σ is the surface tension coefficient,
κ is the local curvature of the interface and ν is the unit
normal vector at the interface oriented toward the air. In
equation (1) the term δ(x−xs) represents the Dirac function
which is zero out of the interface location xs.

The Navier-Stokes equations are written in generalized
variables and discretized onto a non staggered grid. The
system is solved through a fractional step approach: the mo-
mentum equation is advanced in time by neglecting pressure
terms (Predictor step) whose effects are successively reintro-
duced by enforcing the continuity of the velocity field (Cor-
rector step). The diagonal part of the dominating diffusive
terms is accounted implicitly with a Crank-Nicolson scheme,
whereas the other viscous terms, related to the non unifor-
mity of the viscosity and to the grid distortion, are com-
puted explicitly. A low-storage, three-steps Runge-Kutta is
adopted for the explicit terms. The Poisson equation for the
pressure corrector term is solved with a Biconjugate gradi-
ent stabilized (BiCGstab) algorithm (van der Vorst, 1992).

The interface is captured through a Level-Set algorithm.
The signed distance d from the interface is reinitialized at
each step and is convected with the transport equation:

∂d

∂t
= −u · ∇u ,

which ensure that all particles belonging to the free surface
(d = 0) continue to stay there, as the kinematic boundary
condition requires. The surface tension contribution to the
momentum equation is approximated by a continuum model
as suggested in Brackbill et al. (1992). A more extensive
discussion of the numerical model and its validation and
verification is given in Iafrati and Campana (2005).



3. INITIAL FREE–SURFACE PROFILE

A periodic wave profile is initialized as
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,

(2)
where k = 2π/λ is the fundamental wavenumber, ε = ak is
the initial wave steepness and λ is the fundamental wave-
length. The fundamental wavelength is taken as reference
value for lengths, whereas Ur =

√
λg is assumed as reference

value for the velocities. The initial velocity field in water is
assigned as

u = Ωa exp(ky) cos(kx) , v = Ωa exp(ky) sin(kx) ,
(3)

where Ω =
√
gk(1 + ε2) accounts for the nonlinear correc-

tion (Whitham, 1974).
Note that equation (2) is not exactly a third order Stokes

wave as the secular term is missing (Grue et al., 2003). The
purpose of the present paper is to generate breaking of dif-
ferent intensities and to see to which extent the different
breaking intensity affects the air entrainment process. In
this regard the lack of the secular term has only a minor
effect on the results, as it is discussed in Iafrati (2008).

At the beginning of the simulation the flow in air is as-
sumed to be at rest, and the motion occurring in air in the
later stage is induced by the momentum exchange at the
interface operated by both tangential and normal stresses.
No-slip boundary conditions are assigned at the top and bot-
tom boundaries. As the water depth is of the order of half
of the fundamental wavelength, this choice does not affect
remarkably the dynamics of the breaking process (Chen et
al., 1999). Also, for such wavelength-depth ratio, the energy
loss by bottom friction is essentially negligible (Lighthill,
1978). In all cases it is assumed

We = g1/2λ

√
ρw

σ
= 100 ,

which corresponds to water waves of about 30 centimeters
wavelength. For such wavelength the Reynolds number is

Re =
ρwg

1/2λ3/2

µw
' 4.4× 105 ,

which is too high, even for a two-dimensional solver, for
all the scales to be accurately resolved. For this reason
numerical simulations are carried out at Re = 104, whereas
a more careful discussion of the role played by the Reynolds
number on the solution is provided in Iafrati (2008). The
density ratio is assumed to be equal to the real one for air
and water, which is ρa/ρw = 0.00125, whereas the viscosity
ratio is µa/µw = 0.04, the same used by Chen et al., (1999).

The computational domain is one fundamental wave-
length wide and one fundamental wavelength high, that is
x, y ∈ [−0.5, 0.5], and it is discretized by 512 × 512 grid
cells, uniformly spaced. For the case with ε = 0.65, large
drops with high upward velocity components are generated
by the plunging of the jet and a higher computational do-
main, with y ∈ [−0.5, 1.5] and a 512 × 1024 grid, is used.
In the numerical simulations it is assumed δP = δT = 0.005

which means that density and viscosity jumps and surface
tension forces are spread across a region which is about five
grid cells thick. As lengths are scaled by the wavelength, for
a 30 centimeters wave the cell size is about 0.6 millimiters
and the thickness of the transition region corresponds to 3
millimeters. This physical value is important in order to
relate the present numerical results with the experimental
findings by Deane and Stokes (2002).

In order to investigate to which extent the initial wave
steepness changes the phenomena involved in the breaking
event, numerical simulations are carried out by varying ε in
the range 0.2 to 0.65. It is found that the breaking is of the
spilling type for ε = 0.33 and ε = 0.35 whereas it is of the
plunging type for ε > 0.37.
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Figure 1: Time histories of the total area of the air
bubbles entrained by the breaking process. Results
refer to ε = 0.40 (solid), ε = 0.50 (dash), ε = 0.55
(dash-dot), ε = 0.60 (dot), ε = 0.65 (dash-dash-dot).

4. AIR ENTRAINMENT AND DEGASSING
PHASE

The detailed information provided by the numerical solution
allows a quantitative investigation of the air entrainment
and of the degassing process. In Fig. 1 the time histories
of the total area of air entrained by the plunging breaking
event at different steepnesses are drawn. The curves show
the entrapment of the large air cavity at the breaking on-
set. After a time interval during which the area remains
constant, the time histories evidence a sharp rise and a sub-
sequent drop which are related to the plunging of the splash
up jet. As the filament of water that encompasses the cav-
ity is rather thin, it quickly collapses, letting the air in the
cavity to escape, as it can be seen by comparing the time
history of the entrapped air for ε = 0.6, drawn in Fig. 2,
with the free–surface profiles at t = 2.0 and t = 2.7 given in
Fig. 3.

Figure 1 indicates that, in a later stage, the amount
of air entrapped decays with time. From the free–surface
profiles given in Fig. 4 it can be seen that bubbles gradu-
ally rise back towards the free–surface and eventually escape
from the water. Although the above mechanism is the main
responsible for the degassing of the air bubbles, before draw-
ing any quantitative estimate of the degassing process it is
important to analyze the limits imposed by the adopted grid
discretization in connection with the smallest bubbles.
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Figure 2: The total area of the air entrained for ε =
0.60 (solid) is drawn along with the corresponding area
of the unresolved bubbles.

As the free surface is captured on the basis of the change
in the sign of the distance function at two successive nodes
of the grid, the model cannot describe a closed contours
thickness of which is smaller than one grid cell, i.e. 0.6 mil-
limiters. Furthermore, due to the spreading of the density
and viscosity jumps across a transition layer of thickness
2δP , bubbles or air filaments thinner than 2δP , which is
about 3 millimiters, cannot be considered fully resolved. So,
in order to estimate which portion of the entrained bubbles
is resolved, an average thickness is evaluated as the ratio
between the area of the bubble and the maximum between
the horizontal and vertical dimensions of the bubble. A
bubble is considered unresolved when the average thickness
fails below 2δP .
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Figure 3: The free–surface profiles at t = 2.0 and t =
2.7 for ε = 0.60 are compared to show the entrapment
and the subsequent release of a large air bubble by the
splash up jet. A vertical shift of 0.5 is applied between
the two profiles to make the comparison easier.

In Fig. 2 the total area of the unresolved bubbles As is
drawn together with the total area of the entrapped air A
for the case ε = 0.60. The figure indicates that the area of
the unresolved bubbles is very small compared to the total

area up to about half wave period after the breaking onset.
Next, due to the fragmentation of the air cavity it grows
and it gets up to one fourth of the total area.
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Figure 4: The free–surface profiles for ε = 0.60 at t =
5.0 and t = 5.2 are compared to show the vertical rise
of the air bubbles towards the free–surface. Also in this
case a vertical shift is applied.
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Figure 5: Time histories of the total area occupied
by water Aw (top) and of the unresolved bubbles As

(bottom) for the case ε = 0.60.

The artificial degassing of thin air filaments or bubbles
operated by the numerical scheme, can be quantitatively es-
timated from the total area occupied by water Aw, drawn
in the top of Fig. 5 for the case ε = 0.60. The comparison



with the corresponding area of the unresolved bubbles given
on the bottom of Fig. 5, indicates that the sharpest increase
in the water area occurs between t = 2.0 and t = 4.0, dur-
ing which the total area of the unresolved bubbles take the
largest values. In total, at the end of the numerical sim-
ulation, the artificial degassing can be estimated in about
three per cent of initial water area.

With the aim of deriving a quantitative estimate of the
degassing rate, the time histories of the total area occupied
by air bubbles are scaled by the area A0 of the air cavity
entrapped at the breaking onset. Results, drawn in Fig. 6,
are compared with the decay rate proposed by Lamarre and
Melville (1991), who found that the scaled air volume be-
haves as C exp(−3.9(t−tb)/T ), where tb is the time of break-
ing onset and T is the wave period. In Lamarre and Melville
(1991) the constant C = 2.6 accounts for the initial period,
duration of which is approximately T/4, during which the
amount of air entrapped remains nearly constant.
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Figure 6: Time histories of the total area of the en-
trapped bubbles divided by the area of the air cavity
generated at the breaking onset A0. Results refer to
ε = 0.50 (◦), ε = 0.55 (•), ε = 0.60 (4), ε = 0.65
(�). The line represent the exponential decay rate
C exp(−3.9(t − tb)/T ) where tb = 1, T = 2.5 and
C = 102.

In the comparison established below it is assumed tb = 1
and T = 2.5 whereas a different value of the constant C =
102 is needed to get a better agreement. In Iafrati (2008) it
is explained that the different constant is needed to because,
due to a standing wave component generated by the initial
free surface profile, a second breaking event takes place.
The occurrence of the second plunging event and to the
new splash up, keeps the amount of entrapped air constant
for a longer period. Aside from the different constant, the
comparison shown in Fig. 6 indicates that the curves follow
the exponential decay in the early stage. In a later stage,
probably because of the difficulties of the numerical model
in achieving a complete description of the fragmentation
process, numerical results display a lower decay rate.

In order to achieve a quantitative estimate of the effects
of the breaking intensity on the amount of air entrapped,
in Fig. 7 the area of the air cavity entrapped at the onset
of the stronger breaking cases are drawn versus the steep-
ness. The data indicate that, for the range of steepnesses
considered here, the area of the air cavity entrapped by the

first breaking event grows as ε7. At present it is not pos-
sible to estimate to which extent such relation depends on
the initial conditions adopted here. A deeper investigation
is planned for the future in which a similar analysis will be
carried out by using different methods to induce breaking.
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Figure 7: Area of the air cavity entrapped at the break-
ing onset versus the steepness.
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