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Impact of inflated structures on a liquid free surface.
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1) Introduction

There are many situations where inflated structures may hit violently a liquid free surface. One of them
occurs during sea-landing of helicopters. As a matter of fact helicopters are equipped with inflated floaters.
Those floaters are made of impermeable tissues which are almost inextensible and their flexural rigidity is
small. These mechanical characteristics are difficult to reproduce at model scales, that is why we found more
conventional inflated balloons like space hopper. Definitely they have different mechanical properties than
actual floaters. In spite of these differences, experiments have been carried out in the flume of Ecole Centrale
Marseille. Only qualitative measurements have been performed. High speed camera provided the main features
of the phenomenona.

This abtract sums up this experimental campaign and the first attempts done in the numerical modellings
thus yielding some comparisons. It is shown that simple linearized models –both structural and hydrodynamic
models – can reproduce the early stage of penetration when impact occurs. Those give initial conditions for
new models which are expected to reproduce the beginning of the water exit.

2) Experimental campaign

Free drop tests are performed. The figure below shows three elements of the set-up.

A floater (left) falls over a height h onto an initial flat free surface. A fast camera (center) records the final
stage of the drop in air and the whole fluid-structure interaction up to a possible rebound. The camera works
at 1000 frames per second. The water is coloured with fluorescein (right) in order to improve the diffusion of
light into the liquid. Analysis of the video recording provides most of the data for the parametric study.
The penetration of the balloon into the liquid is broken down into two phases of several steps. Those are sumed
up in the following sketch



The central figure shows the time variation of the position of the lower point corresponding to the initial contact
point: this point is noted A in the sequel. From step 2 to step 3, the floater undergoes a fast deceleration.
The following steps correspond to a phase of oscillation of the wetted surface, whereas its size hardly varies.
As these data follows from image analysis, when point A is not visible, we cannot determine its position, that
occurs at step 4. The final stage (not shown here) is the rebound.
The parameters are limited to the initial drop height (giving the velocity at initial contact) and the pressure
pint inside the balloon (controlling the mechanical characteristics of the elastic membrane). The influences of
these two parameters are illustrated below
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These are the time variations of the vertical position of point A for different inner pressures and drop heights.
It is noted that the first stages of penetration are quite similar whatever the values of the parameters. When
oscillation phase starts, the influence of parameters are more noticeable. In the left figure, the arrow indicates
the increasing inner pressure. It is worth noting that the smaller the inner pressure, the greater the deflection
of point A, as if this point was ”sucked” in the liquid. In the right figure the arrow indicates the increasing
drop height for a given inner pressure. The figure shows that increasing the initial velocity just leads to amplify
the magnitude of the deflection whereas the frequency of oscillations is hardly affected.

3) Dimensional analysis

A dimensional analysis shows that three dimensionless numbers are of importance. These numbers are calcu-
lated for the following data: diameter of the space hopper: D = 0.46m (it is supposed to be spherical), Young
modulus: E = 302MPa, Poisson coefficient: ν = 0.31 and density: ρs = 1060Kg/m3. The average thickness
is H = 1.1mm. The following table sums up the calculated numbers depending on the identified phases of the
fluid structure interaction:

w

R
= f

(

pint

ρV 2
f

,
ρfV 2

f

E
,
Vf

Vs

)

numbers initial phase oscillation phase

Euler number pint

ρf V 2

f

O(10−3) O(1)

Cauchy number
ρfV 2

f

E
O(10−1) O(10−6)

reduced velocity
Vf

Vs
O(1) O(10−2)

where indices f and s refer to the fluid and the solid respectively. w is the deflection and R the radius of the
sphere. The scale velocity of the fluid is denoted Vf ; it follows from the evaluation of the velocity of expansion
of the wetted surface and therefore it is significant during the initial phase. During the oscillation phase it is

set to unity. The scale velocity in the structure follows from the formula Vs =
√

E
ρs

. We conclude that fluid

structure interactions mainly occur during the initial phase. Later during the oscillation phase, we deal with
a spherical cup initially deformed (initial potential energy) and hence it is oscillating. The mechanism which
leads to a rebound is not detailed here.

4) Modelings

In order to describe the early stage of penetration, simple linearized models may suffice. From the theoretical
developments detailed in Scolan (2004) the elaborated model combines a Wagner model (1932) and a linear



elastic model for thin shell. The configuration is fully axisymmetric. That means that the floater is locally
represented at the initial contact point A as a paraboloid with a radius of curvature R. This radius R is
supposed to be large compared to the penetration depth. The linearization of the boundaries follows the
assumption that deadrise angle is small. Hence the shell is considered as a flat disk. All variables are broken
down as series of normal modes, for example the deflection is written as

w(x, y, t) =

∞
∑

n

An(t)wn(x, y) (1)

The mode shape wn depend on the boundary conditions and they are expressed with Bessel functions of zeroth
order. For the present application we considered a disk clamped along its outer boundary: only Jo and Io are
used. It is shown that the value of the outer radius has a light influence on the results: here we take an outer
radius 0.5m and the series contain 20 modes.
The hydrodynamic boundary value problem is formulated in term of displacement potential. The solution is
Hankel transformed. Wagner condition stipulates that the vertical displacement at the contact line is finite
and that yields an equation for the position of this contact line which reads

∑

n

AnQn =

∫ t

0
V (τ)dτ −

a2

3R
, with Qn(a) =

∫ π/2

0
sin θwn(a(t) sin θ)dθ (2)

where a(t) denotes the radius of the contact line. From Sneddon (1966) the velocity potential ϕ can be expressed
in a closed form as

ϕ(r, a) = −
2V (t)

π

√

a2 − r2 +
∑

n

ȦnΦn, with Φn(r, a) =
2r

π

∫ argch(a/r)

0
cosh xQn(r cosh x)dx. (3)

where V (t) denotes the instantaneous velocity of penetration and r is the radial coordinate. A time differential
system for a and An is formulated and solved. If free drops are considered, Newton law closes the system of
equations. In the present application, instead of letting the floater freely penetrating the liquid, we impose
its kinematics. That means that the time history of V is given and follows from experiments. The following
figures show the time variations of penetration depth (left), velocity (center) and acceleration (right).
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The computations provide the deformed shapes at some discrete instants (roughly at the first six milliseconds,
those are plotted below (solid lines) and compared to measured data (dots)
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It is clear that during the first stage of penetration (up to t ≈ 6ms) the present model accurately predicts the
size of the wetted surface and its expansion. In particular the fact that the wetted surface becomes almost flat
is well reproduced. The following figures show the time variation of the radius of the wetted surface and its
time derivative. In the right figure both rigid case (da/dt = 3RV

2a ) and present elastic case are drawn
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The theoretical singular behavior of the velocity da/dt at the first instant of contact is clear; actually da/dt
behaves like 1/

√
t. These consideration are of some interest since the maximum of pressure varies as the square

of the expansion velocity and consequently the predicted pressure distribution by the present model might be
somewhat unrealistic.
In order to describe the latter stages of penetration, the present model fails since this model still predicts an
expansion of the wetted surface as experiments show that the wetted surface varies slightly and the oscillation
phase starts. Adapted models can be elaborated on the basis of the present one and for which we can consider
that the wetted surface is more or less at rest. Future works are oriented towards this direction.

5) Conclusion

We consider the free fall of an inflated floater onto a initial flat free surface of water. Some qualitative
experimental results are obtained by means of fast video recordings. The expansion of the wetted surface and
the deformed shape are well predicted during the early stages of penetration. Much works are still to be done.

Experimentally the inner pressure should be measured, that would help to better understand the coupling
with the inner compressed gase. Comparisons with the impact of the floaters onto a solid ground should be
done. Finally the phenomenon should be observed from below, in order to check the axisymmetry on one hand
and to better measure the expansion of the wetted surface, on the other hand.

Numerically, it is expected that a Generalized Wagner Model for elastic shell should improve the results.
Then the oscillation phase can be better reproduced and the hence the conditions under which a rebound
occurs.
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