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Internal waves are generated many places in the world’s oceans. The waves induce
rather strong currents that have implications to offshore installations. It is particu-
larly the loads and motions induced by the currents that represent the concern, such
as, vortex induced vibrations of long cables, pipelines, moorings or risers. Other con-
cerns relate to erosion problems in connection to installations. A fundamental problem
relates to the energy cascade taking place when internal waves move over variable bot-
tom bathymetry, particularly the nonlinear part of that motion. If the bottom is very
rough, the propagation is both slowed down and damped. Recently, Alam and Mei
(2007) studied attenuation of long interfacial waves over a randomly rough sea bed,
including the effect of weak nonlinearity, with the wavelength comparable to the hori-
zontal scale of the bathymetry. In Chen and Liu (1996) they developed a variant of the
KdV equation for interfacial flow assuming the slowly varying random depth had bathy-
metric length scale much longer than the characteristic wavelength. We here outline
a general method for interfacial wave motion in three dimensions: It is fully nonlinear
and dispersive (containing all wavelengths). The full representation of nonlinearity is
important, since internal waves typically have large relative vertical excursions. The
model evaluates the interfacial wave motion and the induced currents (particularly the
bottom currents).

For reference, a few classical works on (linear) wave scattering in a single layer fluid in-
clude: Howe (1971), Devillard et al., (1988), Nachbin, (1995), Pelinovsky et al. (1998),
Belzons et al. (1988), and Mei and Hancock (2003) - the latter weakly nonlinear.

Fully nonlinear formulation

We consider fully nonlinear motion in three dimensions where an interface separates
an upper layer of mean thickness h2 and density ρ2 from lower layer of mean thickness
h1 and density ρ1. Coordinates are introduced with x = (x1, x2) being horizontal and
y vertical. The level y = 0 separates the layers at rest. The upper layer is covered
by a ridid lid, while the lower layer is bounded by a variable bottom determined by
y = −h1 + β(x). We assume that the flow in each layer may be modelled by potential
theory, with φj (j = 1, 2) as velocity potentials in the layers. The motion of a non-
overturning interface I at y = η is considered. The potentials evaluated at the interface
are introduced by φs1(x, t) = φ1(x, y = η, t) and φs2(x, t) = φ2(x, y = η, t), i.e. an
index s means the value of the quantity at the actual position of the interface. The
kinematic and dynamic boundary conditions at the interface gives

ηt − V = 0, (1)

(φs1 − µφs2)t + g′η + n.l.t.2 = 0, (2)
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where µ = ρ2/ρ1, g′ = (1 − µ)g and V = φ1n

√

1 + |∇η|2 denotes a scaled normal
velocity of the interface. Further, ∇ = (∂x1

, ∂x2
) denotes the horizontal gradient. The

set of terms n.l.t.2 is derived in Grue (2002, section 6).

The Laplace equation is solved in each layer using a Green function formulation. The
resulting integral equations are inverted using Fourier transform, giving (Grue, 2002)

F(V ) = −k tanh kh2F(φs2) + n.l.t.a, (3)

where F means Fourier transform, k wavenumber in spectral space and k = |k|. For
the lower layer we get (see Fructus and Grue, 2007):

F(V ) = k tanh kh1F(φs1) + ik · F(β∇φb1) + n.l.t.b, (4)

F(φb1) = F(φs1)/ cosh kh1 − (tanh kh1/k)ik · F(β∇φb1) + n.l.t.c, (5)

where φb1 denotes the wave potential at the bottom boundary, and n.l.t.b., n.l.t.c.
denote nonlinear terms.

Effect of a random bottom

The bottom profile is given by y = −h1 +β(x), and we shall assume that the variation
of β has zero mean, standard deviation of σ and correlation function given by <
β(x)β(x1) >= σ2(x)γ(x − x1) where <> represents an average. For the quantity
< F(β)(k)F(β(l) > this means

< F(β)(k)F(β)(l) >=

∫ ∫ ∞

−∞

dx1e
i(k+l)·x1

∫ ∫ ∞

−∞

dx1e
ik·(x−x1) < β(x)β(x1) >

= 4π2σ2F(γ)(k)δ(k + l), (6)

where δ denotes the Dirac delta-function in two dimensions. The aim is to evaluate the
effect of the random bottom on the averaged wave field. From the equations outlined
above we obtain for the motion in the lower layer:

Leading approximation:

F(V 0)(k) = k tanh kh1F(φs)(k) + n.l.terms, (7)

F(φ0
1b)(k) = sechkh1F(φs)(k) + n.l.terms. (8)

The effect of a random bottom appears as follows

F(V r)(k) = sechkh1ik · F(β∇F−1(F(φs
0)(k)sechkh1)) + n.l.terms, (9)

F(φr
1b)(k) = − tanh kh1ik · F(β∇F−1(F(φs)(k)sechkh1)) + n.l.terms. (10)

The effect of a random bottom on the averaged motion appears as follows

F(V rough)(k) = −σ2M(kh1)F(φs)(k),

M(kh1) =
sech2kh1

4π2

∫ ∫ ∞

−∞

duF(γ)(u)(u · k + k2)2 tanh |u + k|h1

|u + k| , (11)
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where the average <> has been used.

Correlation functions are possible in three and two dimensions, i.e.

γ(x1, x2) = e−|x|2/(2λ2), γ(x1) = e−x2

1
/(2λ2). (12)

Corresponding Fourier transforms read

F(γ)(k) = 2πλ2e−k2λ2/2, F(γ)(k1) =
√

2πλe−k2

1
λ2/2. (13)

Dispersion relation

For linear motion with period ω and wavenumber k (and k = |k|) the dispersion
relation is obtained from the prognostic equations (linear)

ω2 =
g′[k tanh kh1 − σ2M(kh1)]

1 + µ[tanh kh1 − σ2M(kh1)/k]/ tanh kh2

, (14)

which shows that, for fixed ω the wavenumber increases, from plane bottom to rough
bottom. This means the wave speed reduces due to a rough sea bottom. More results
will be shown at the Workshop.
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