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Analytical approximations of linear sloshing with potential flow of an incompressible liquid are 
considered. The presented cases involve the Rayleigh quotient variational formulation, analytical 
continuation and asymptotic methods in the eigenvalue problem as well as linear modal theory for the 
forced motion problem.   

1. Rayleigh quotient and variational equation. The original spectral boundary problem on a natural 
sloshing frequency s  and mode j  is due to the Rayleigh quotient associated with the extrema (local 
minima) of the functional  
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Here 0 0 and QS  are the mean free surface and liquid domain, respectively, and ( )cos tj s  is a velocity 

potential. The lowest natural frequency 1s  gives the absolute minimum of (1) with 1j . Using theorems 
on the quotient (Feschenko et al., 1969; Faltinsen & Timokha, 2009) makes it possible to get upper and 
lower bounds of the natural frequencies and modes. However, the difference between the upper and 
lower bounds may in some cases be too large to provide a satisfactory estimate.  

   The necessary extrema condition for (1) deduces the variational equation for the natural modes mj  
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to be fulfilled for all the smooth functions dj . The Laplace equation and all the boundary conditions are 
then natural, i.e. follow from (2). This means that the test functions used in minimizing eq. (1) for 1m =  
need only to satisfy liquid volume conservation. Higher modes must be orthogonal to lower modes. 

Table 1. Non-dimensional lowest eigenvalue 2
1 0 1 0 /R R gk s=  for a 2D circular tank and 2

1,1 0 1,1 0 /R R gk s=  for a spherical 

tank as a function of the ratio between filling depth h  and radius 0R  (McIver, 1989). Estimates of 1 0Rk  and 1,1 0Rk based on 

variational formulation are also given together with vertical position a  of dipole singularity above mean free surface. 
2D circular tank Spherical tank Stream lines of the dipole-like 

solution for 2D case With test function With test function 
0

h

R 1 0Rk  
1 0Rk  

0/a R  
1,1 0Rk  

1,1 0Rk  
0/a R  

0.2 1.04385 1.044012 1.836 1.07232 1.07233 2.7328 
0.4 1.09698 1.09778 1.673 1.15826 1.15833 2.465 
0.6 1.16268 1.164845 1.511 1.26251 1.2628 2.1953 
0.8 1.24606 1.25077 1.348 1.39239 1.3933 1.9245 
1.0 1.35573 1.36488 1.185 1.56016 1.5625 1.6527 
1.2 1.50751 1.524338 1.018 1.78818 1.794 1.3791 
1.4 1.73463 1.765255 0.842 2.12320 2.1371 1.1019 
1.6 2.12374 2.182 0.651 2.68635 2.7218 0.81625 

 1.8 3.02140 3.1536 0.427 3.95930 4.0723 0.5076 

2. Test functions with a physical basis (circular/spherical tank). The experiments by Barkowiak et al. 
(1985) for a circular tank showed that the path lines of liquid particles for the lowest mode resemble the 
path lines due to an infinite-fluid horizontal dipole with singularity above the mean free surface at the 
tank’s centreplane. If a Cartesian coordinate system Oyz  has the origin at the intersection between the 
mean free surface and the tank’s centreplane, a normalized dipole solution with singularity at ( )0,a  is 

( )2 2
1 0 / ( )R y y z aj = + - . The procedure can be generalized to a spherical tank with a cylindrical 

coordinate system Or zq . The horizontal dipole solutions are then either 

( )3 /22 2 2
1,1(sin) 0 sin / ( )R r r z aj q= + -  or ( )3 /22 2 2

1,1(cos) 0 cos / ( )R r r z aj q= + - , 0a > . These test solutions 

satisfy Laplace equation and the volume conservation condition; the boundary conditions are in general 
not satisfied. The test functions are substituted into 

0 0,QK S given by (1). The lowest eigenfrequency 
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follows by minimizing 
0 0,QK S with respect to a . Table 1 shows good agreement with benchmark 

numerical results and confirms that the estimate cannot be lower than the correct eigenfrequency (Table 
1). 

3. Analytical continuation is in some cases possible as part of procedures to estimate natural 
frequencies and modes. Chamfers (see, Figure 1a) and inclination of the tank bottom are examples. The 
natural modes nj¢  in a domain 0Q ¢  must be analytically continued into a domain 0Q  where an analytical 

solution nj  exists. The objective is to express the natural frequencies n ngs k¢ ¢=  for the domain 0Q ¢  in 

terms of the natural frequencies n ngs k=  for the domain 0Q  with a small correcting factor that 

accounts for the difference in the liquid domains. Other assumptions are (i) the area/volume ( )0.Vol Qd  of 

the difference 0Qd  between the domains 0Q  and 0Q ¢  is small relative to the area/volume of 0Q ; (ii) 

characteristic length dimensions of 0Qd  are small relative to the wavelengths associated with the natural 

modes nj¢  and nj ; (iii) the mean free surfaces 0
¢S  and 0S  of domains 0Q  and 0Q ¢  are the same. It follows 

by rewriting the variational equation (2) and asymptotic analysis that 
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Figure 1. Examples of small 
reductions of rectangular tank. 
One can get explicit formulae 
(based on eq. (3)) for chamfered 
tanks, inclined bottom etc. 
Estimates for tanks with baffles 
(b) and poles (b) are based on eq. 
(4).  

  Analytical continuation cannot be used to estimate the effect of interior structures such as baffles, pump 
towers and screens on the natural frequencies (see, e.g. cases b and c in Figure 2). However, if the 
interior structures do not have a net source/sink effect on the flow and the cross-dimensions of the 
interior structure are small relative to both the main tank dimensions and the wavelength of the 
considered sloshing mode, the natural frequencies can be expressed in terms of the added mass 
coefficients and displaced mass of the interior structure. A similar procedure is possible for slender 
structures with small transverse cross-sections. The derivation starts with using Green’s second identity  
in combination with the definition of added mass. The basic 3D formula is as follows  
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Figure 2. The non-dimensional lowest natural eigenvalue 2
1,1 0 1,1 0 /R R gk s=  versus the vertical location bh  of a ring baffle 

relative to the mean free surface in an upright circular cylindrical tank with radius 0R . Dashed lines are drawn by using the 

asymptotic formula (3) by assuming 0/ 1bl R   and / (1)b bh l O³ .  Solid lines represent accurate numerical results. The 

numbers on the solid and dashed lines are values of  0/bl R . Points correspond to experimental data by Dorozhkin 

(pers.comm.)  (case a, 0/ 1h R = )  and Miskishev & Churilov (1977)  (case b, 0/ 1.7h R = ).  

Here cos( )m mtj s is the velocity potential due to the m ’th eigenmode without the presence of the interior 
body. The formula expresses the effect of the change in the kinetic energy due to the interior structure. P  



is either the geometrical centre of the internal body or the mounting point of a baffle and ijA  are 

frequency-independent added mass coefficients for the interior body. A close proximity of the tank 
boundaries and/or the free surface in terms of a rigid-wall condition must be accounted for in ijA . 

Summation changes to 2N =  for two-dimensional problems. The formula can be generalized to include 
several interior bodies with possible hydrodynamic interaction.  

  Example of the use of the formula is represented in Figure 2. A slender-body formulation with 2D 
added mass coefficients with tank wall effects is used in accounting for the ring baffle in the vertical 
circular cylinder. The effects of the tank bottom and the free surface on the added mass are neglected. 
The asymptotic formula agrees well with accurate numerical results and experimental data. However, 
difficulties occur when the ring baffle comes too close to the free surface. Reasons are, for instance, local 
nonlinear free surface shallow-liquid effects and slamming. The formula has also been experimentally 
validated for a vertical pole  in a rectangular tank.   

4. Asymptotic methods. The mean free surface was assumed approximately the same when we related 
the eigenvalue problems for two tanks in the previous cases. This condition is, in general, not satisfied 
for the tapered tank in Figure 3a relative to a rectangular tank. In this case, one can employ an asymptotic 
method with the angle a  defined in the figure as a small parameter. The focus is on waves along the Ox -
axis. Due to the free-surface condition, the solution is presented as ,0( , , ) ( , )cosh( ( ))ix y z x y k z hj f= +  and 

2
,0 ,0 ,0 ,0/ tanh( )i i i ig k k hs k= = , where f  and ,0ik  should be found from the corresponding boundary 

problem in the cross-sectional trapezoidal domain. Due to symmetry of the domain, the focus is on the 
half of the cross-section in Figure 3b. Because almost two-dimensional sloshing in the x z-  plane is 
considered, a small parameter d  is introduced to express the slow variation of the flow in the y - 
direction, i.e. 1( , ) ( , ) ( , )x y f x y f x yf d= = . Matching d  with a  by using the wall boundary conditions gives 
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2 1, 0 / 0,f x x x L¶ ¶ = =  . This is the spectral 

problem with respect to ( , 0)f f x=  with the spectral parameter 2
,0ik . Its solution 2

,0ik  and the 

corresponding natural frequencies are given  in the caption of Figure 3. 

x

y

z

(a)

α

L L
2

2
L

2
1 1

(b) y

x

2

 

Figure 3. 3D dimensional and top view of one half 
part of a trapezoidal-base tank. The analytical 
solution for a 3D rectangular tank is used as the 
zero-order approximation for small a . The result 
for the natural frequencies corresponding to 
longitudinal standing waves along the Ox -axis is 

( )2
,0 ,0 ,0/ tanhi i ig k k hs =  with 

( ) ( )2 22
,0 1 2/ /ik i L Lp a= + . 

 

5. A linear modal method transforms the sloshing problem to a system of ordinary differential equations 
coupling the generalised coordinates ( )i tb  representing the wave elevations of the natural sloshing 

modes. The equations are 2 ( ),  1,2,...,m m m mK t mb s b+ = =  where ms  are natural sloshing frequencies and 
6

1 1 1
1 1 5 2 2 4 0( 3)
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=

= - - - + -å   . Here ( )i th  are the translatory 

and angular motions of the tank and the hydrodynamic coefficients 1 2, ,m m ml l m  and 0 , 1,2, 3im il =  are 
related to quadratures over the natural sloshing modes and the so-called Stokes-Joukowski potential. 
Damping terms due to, for instance, viscous boundary-layer effects may be added. Moreover, there exist 
the so-called Lukovsky formulae that express the hydrodynamic force and moment in terms of ( )i th  and 
the generalised coordinates with the same hydrodynamic coefficients and the inertia tensor computed as 
quadrature over the Stokes-Joukowski potential (Faltinsen & Timokha, 2009).  

Example 1. Using the dipole solution from 2., one can construct a one-dimensional modal equation (only 
the lowest mode matters) for transient sloshing during a transverse maneuver of a circular tank as 
illustrated in Figure 4a. The horizontal hydrodynamic force is considered Figure 4b.  
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Figure 4. Simulation of lane change of a tank vehicle with a circular cylindrical tank. The transverse acceleration of the 

vehicle is ( )2 th . The maximum horizontal hydrodynamic force 2max F  divided by the maximum horizontal frozen liquid 

force 2l am h  is presented as a function of the ratio between the duration dT  of the manoeuvre and the highest natural 

sloshing period 1T  for different liquid depth-to-cylinder ratios 0/h R . The lane-change acceleration is idealized as a 

sinusoidal function of time (see, part b). Along with linear theoretical prediction by the two-mode model (solid and dashed 
lines), part (b) presents numerical results by Moderassi-Tehrani et al. (2006)  obtained by using the commercial CFD-code 
FLUENT. FLUENT data correspond to 0/h R = 0.8 (●), 1.2 (□) and 1.6 (∆). 

Example 2. The hydrodynamic forces and moments are functions of the hydrodynamic coefficients of the 
modal method.The corresponding frequency-domain added mass coefficients are frequency dependent 
with either positive or negative values and are infinite when the forcing frequency ns s=  (n  is a fixed 

number of the natural mode). The singular behavior is ( ) 1

nO s s -é ù-ê úë û  as ns s . Even though the product 

of two added mass coefficients is ( ) 2

nO s s -é ù-ê úë û  as ns s , combinations of products of the added mass 

coefficients may lead to a singular behaviour ( ) 1

nO s s -é ù-ê úë û  as ns s . Newman (pers. comm.) showed 

by simulations (and derivations for a rectangular tank) that the singularity of 2
44 22 24A A A-  is ( ) 1

nO s s -é ù-ê úë û . 

Here 22 24 44,  and A A A  are the tank’s added mass coefficients in sway, coupled sway-roll and roll, 
respectively. This fact was essential when Newman explained why the coupled sway and roll of a 
hemispheroid in regular beam sea waves are finite at the resonance frequency of sloshing. Using the 
modal-based expressions for added mass coefficients makes this point straightforward to explain in 
general. Indeed, the primary singular terms of the added mass at ns s=  are  
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These terms annihilate when we consider 2
44 22 24A A A- . This fact applies for any 2D and 3D tank. 
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