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Abstract

On the basis of linear theory, an explicit expression is presented for the reflection coefficient
R∞ when a plane wave is obliquely incident upon a semi-infinite porous plate in water of finite
depth. The expression does not rely on knowledge of any of the complex-valued eigenvalues or
corresponding vertical eigenfunctions in the region occupied by the plate. Also presented is a
fast convergent expression for the reflection coefficient R when the plate is of finite length a
and is backed by a rigid vertical wall. The special case of normal incidence is relevant to the
design of submerged wave absorbers in a narrow wave tank.

1 Introduction

At last year’s Workshop, a paper by I. H. Cho
and M. H. Kim considered the effectiveness as
a wave absorber of a single submerged horizon-
tal porous plate, installed at the end of a narrow
wave tank terminated by a vertical wall, as an
alternative to using a number of vertical porous
plates. The problem of determining the potential
everywhere, and in particular the reflection coef-
ficient R, was solved using matched eigenfunction
expansions. This technique involves splitting the
fluid domain into separate regions and construct-
ing series expansions of eigenfunctions appropri-
ate to the boundary conditions in each region.
These expansions are then matched for continu-
ity of potential (i.e. pressure) and horizontal ve-
locity across the common interface between the
regions. The orthogonality of the eigenfunctions
yields an infinite system of equations for the un-
knowns in the eigenfunction series expansions,
which is solved numerically by truncation.

There is a fundamental difficulty with using
matched eigenfunction expansion methods here.
This is that the boundary condition to be satis-
fied on the plate gives rise to a complex disper-
sion equation so that the eigenvalue problem is no
longer self-adjoint and standard Sturm–Liouville
theory does not apply. McIver (1998) shows how
this can be overcome in a simpler related problem
but it requires knowledge of which of the eigenval-

ues are multiple rather than simple zeroes of the
dispersion relation since then the eigenfunctions
are more complicated. Even if it is assumed that
all the eigenvalues are simple, which is not true in
general, it is not easy to track these complex ze-
roes over a range of parameters. The same prob-
lem arises in the paper presented by W. Bao and
T. Kinoshita last year when considering the wave
forces on a submerged fish cage, where the dis-
persion relation (their equation (7)) is even more
complicated.

Here, we revisit the problem of the submerged
plate and proceed differently. First, we assume
that the plate is of infinite extent which allows
us to use the Wiener–Hopf technique to derive
an explicit solution for the reflection coefficient
R∞ in a form which does not require knowledge
of any of the eigenvalues in the porous-plate re-
gion. In addition, imposing the square-root sin-
gularity in the velocity of the fluid near the edge
of the plate is crucial in obtaining the solution.
This condition was not explicitly considered in
either of the papers mentioned above or in the
formulation of Wu et al. (1998) on which the
Cho & Kim paper was based. We next consider
the finite-plate problem and show how the eigen-
function method can be improved by using a so-
called residue calculus technique (see, for exam-
ple, Linton & McIver, 2001, pp. 148–166), which
provides a powerful rapidly convergent solution



which again builds in the necessary singularity.
Because of space restrictions we are only able
to present the governing equations, an outline of
each method and a summary of the main results.

2 Governing equations

It is convenient to generalise the problem to in-
clude obliquely incident waves on a submerged
porous half-plane. Then, on the basis of lin-
ear water-wave theory, there exists a harmonic
velocity potential whose dependence on y and
t is assumed to be proportional to ei(βy−ωt) to
allow for obliquely incident waves of frequency
ω/2π, where β is the component of the wavenum-
ber in the y-direction. Then, the reduced (com-
plex) potential is φ(x, z) and the full potential
is Re [φ(x, z)ei(βy−ωt)]. The problem is now two-
dimensional and the free water surface is chosen
to be {(x, z) | z = 0} and the fixed stiff porous
plate occupies Γp = {(x, z) |x > 0, z = −d}
while the water domain is Ω = {(x, z) | − h <
z < 0}\Γ̄p.

The mathematical description of the time-
harmonic problem is as follows. It is assumed
that a plane wave, making an angle θinc with the
x-axis, is incident on the submerged plate from
x = −∞. Then, the reduced complex potential
φ satisfies

−∆φ+ β2φ = 0 in Ω, (1a)

∂zφ = 0 on z = −h, (1b)

∂zφ = αφ on z = 0, (1c)

∂zφ|z=−d− = ∂zφ|z=−d+ = iµ[φ] on Γp, (1d)

|∇φ| = O(r−1/2)

as r =
(
x2 + (z + d)2

)1/2 → 0. (1e)

Equation (1d) is derived from the assumption
that the normal velocity of the fluid passing
through the porous plate is proportional to the
pressure difference across it, see Chwang (1983)
for a fuller discussion. Here α = ω2/g, µ = σω,
where σ has positive real part and is related to
the properties of the porous plate, and [φ] denotes
the jump of φ across Γp: [φ] = φ|z=−d−−φ|z=−d+ .
Equation (1e) reflects the infinite speed of the
fluid around the sharp edge of the plate. Finally,
radiation conditions are needed appropriate to
the scattering of the incident wave. In what fol-
lows, we write c = h− d for brevity.

Consider in x < 0 the expression e±κnxψn(z),

where ψn(z) = cos kn(z+h)
cos knh

, n = 0, 1, 2, . . . , κn =

(k2
n + β2)1/2 and where the numbers kn, n ≥ 1,

are the positive real roots of the relation α +
kn tan knh = 0 and k0 = −ik is its sole negative
imaginary root. The positive real wavenumber
k is thus related to α by α = k tanh kh. Then,
e±κnxψn(z) satisfies (1a), (1b) and (1c). Thus, a
wave of unit potential amplitude, obliquely inci-
dent from x = −∞ on the submerged plate, has
the form eiκxψ0(z), where κ ≡ iκ0 = k cos θinc

and β = k sin θinc. We can now complete the
conditions on φ by demanding φ ∼ (eiκx +
R∞e−iκx)ψ0(z) as x→ −∞ and for the plate re-
gion φ → 0 as x → ∞ so that the effect of the
plate is to progressively reduce the wave ampli-
tude along its length.

3 Wiener–Hopf solution

The solution is straightforward but long and re-
lies crucially on being able to write K(s) =
Kn(s)/Kd(s), where

Kn(s) = γ sinh γh− α cosh γh, (2a)

Kd(s) = γ sinh γc(γ sinh γd− α cosh γd)

− iµ(γ sinh γh− α cosh γh), (2b)

in the form K(s) = K+(s)K−(s), where K±(s) is
non-zero and regular in the upper/lower half of
the complex s-plane, and γ = (s2 + β2)1/2. Once
this is done, the reflection coefficient is

R∞ =
k3 sinh2 kcK+(κ)K−(−κ)

κ2(2kh+ sinh 2kh)
. (3)

It is easy to split the numerator of K(s) using
its infinite-product decomposition into its known
factors such as (1 +γ2/k2

n) for n = 0, 1, 2, . . . but
the location of the complex, possibly multiple, ze-
roes of the denominator is not so easy. We avoid
this by using a Cauchy integral method which
results, after simplifying, in

R∞ = − exp(−2iΘ(κ)). (4)

Here,

Θ(κ) = I(κ) + 2 arctan(β/κ) + χ(κ)

+
∞∑
n=1

(
arctan(κ/κn)

− arctan(κ/c′n)− arctan(κ/d′n)
)
, (5)



where κn = (k2
n + β2)1/2, c′n = (c2n + β2)1/2,

d′n = (d2
n + β2)1/2, cn = nπ/c, dn = nπ/d, and

χ(s) = sπ−1(h log h− c log c− d log d). Finally,

I(s) =
1

π

∫ ∞
0

log(F (st))

t2 − 1
dt,

where F (s) = γ2 sinh γc sinh γd/Kd(s), and
which can be converted into a numerically
favourable expression for real argument.

It is of interest to determine R∞ on the as-
sumption that the zeroes of the denominator of
K(s) are all simple and of the form γ = γn =
±iln, or s = ±iλn, n = 0, 1, 2, . . . , where the ln
are all complex. Care must be taken in the num-
bering of the roots, which we also denote as λ±n ,
n = 1, 2, . . . , as they arise as perturbations of the
roots above (below) the plate in the limit case of
an impermeable dock (σ = 0). Then, we can
expand

F (s) =
γ2 sinh γc sinh γd

(−iµα)
∏∞

n=1(1 + γ2/l2n)

=
(s2 + β2)2cd

∏∞
n=1(d

′2
n + s2)/d2

n)((c′2n + s2)/c2n)

(−iµα)
∏∞

n=1((λ
+
n

2 + s2)/l+n
2)((λ−n

2 + s2)/l−n
2)

and the infinite product in the denominator con-
verges because of the behaviour of the ln as
n → ∞. To evaluate I(κ) we make use of the

result 1
π

∫∞
0

log(a2+b2t2)
t2−1

dt = arctan(b/a) and we
find that

I(κ) = 2 arctan(κ/β) +
∞∑
n=1

(
arctan(κ/d′n)

−arctan(κ/λ+
n )+arctan(κ/c′n)−arctan(κ/λ−n )

)
,

so that

Θ(κ) = π + χ(κ) +
∞∑
n=1

(
arctan(κ/κn)

− arctan(κ/λ+
n )− arctan(κ/λ−n )

)
. (6)

4 Finite plate: eigenfunction mat-
ching and residue calculus

The fluid region is now {(x, z) | − ∞ < x <
a, −h < z < 0} with the submerged plate oc-
cupying {(x, z) | 0 < x < a, z = −d} with a
rigid vertical wall at x = a, −h < z < 0. If the
lm are assumed known and simple, then vertical
eigenfunctions of the form

Ψm(z) =

{
Ψm(z), −d < z < 0,

Ψm(z), −h < z < −d, (7)

m = 0, 1, 2, . . . , where

Ψm(z) = pm(lm cos lmz + α sin lmz),

Ψm(z) = qm cos lm(z + h),

can be used to expand the potential for 0 < x <
a. Here, pm and qm are chosen to satisfy the first
equality in (1d) and such that the Ψm have unit
L2-norm, also cf. Wu et al. (1998). The second
equality in (1d) is automatically satisfied since
Kd(±iλn) = 0 or, equivalently, if the lm satisfy
the dispersion relation

lm
iµ

+
lm sin lmh+ α cos lmh

(lm sin lmd+ α cos lmd) sin lmc
= 0. (8)

Then, we can write

φ−(x, z) = ψ0(z)e−κ0x +
∞∑
m=0

amψm(z)eκmx, (9)

φ+(x, z) =
∞∑
m=0

bmΨm(z)
coshλm(a− x)

coshλma
, (10)

for x < 0 and 0 < x < a, respectively. We now
match the potential and its horizontal derivative
across x = 0, multiply by Ψn and integrate over
(−h, 0) to get an infinite system of linear alge-
braic equations for the am and bm, which can be
truncated and solved numerically. This is the
usual eigenfunction matching method. But fur-
ther analytical progress is possible. We eliminate
bm and re-arrange to obtain(

1

κ0 + λn
+

e−2λna

κ0 − λn

)
=

∞∑
m=0

Am

(
1

κm − λn
+

e−2λna

κm + λn

)
, (11)

n = 0, 1, 2, . . . , where Am = amψ
′
m(−d)/ψ′0(−d),

and, from (9), R = A0.
Neglecting the terms involving the exponen-

tials is equivalent to letting a→∞ and gives the
infinite system for the semi-infinite plate which is
simply

∑∞
m=0A

∞
m/(κm − λn) = 1/(κ0 + λn), n =

0, 1, 2, . . . , where R∞ = A∞0 and A∞m ∼ m−1/2 as
m → ∞ to ensure the correct singularity at the
edge of the plate. This equation can be solved
explicitly using residue calculus when it is found
that R∞ is the same as (4) together with (6).
Returning to (11), a rapidly convergent expres-
sion for R can be developed, again using residue
calculus, namely

R = R∞
(

1−
∞∑
n=0

Bn

λn − κ0

)/(
1−

∞∑
n=0

Bn

λn + κ0

)
,



where the Bm satisfy Bm +
∑∞

n=0KmnBn = Cm,
m = 0, 1, 2, . . . , where Kmn = Cm/(λm + λn)
and Cm ∼ e−2(λma+χ(λm)) for m → ∞. Thus, the
equation for the Bm is rapidly convergent and a
good approximation is given by the term n = 0
in R. It turns out that B0 ≈ 2λ0e

−2(λ0a+χ(λ0)+θ0),
where θ0 = arctanh(λ0/κ1) − arctanh(λ0/λ

−
1 )

+
∑∞

n=2

(
arctanh(λ0/κn) − arctanh(λ0/λ

+
n ) −

arctanh(λ0/λ
−
n )
)
.

5 Numerical comparisons

We first compare R∞ calculated using the ex-
pression from the Wiener–Hopf approach using
the Cauchy integral method (W–H) to the re-
sult from simple eigenfunction matching (EM).
The roots of (8) are tedious to calculate and are
found by using their asymptotics to obtain an
initial guess, which feeds into a numerical solver
based on Meylan & Gross (2003). For kh = 1.22,
σ = 0.32, c/h = 0.71, θinc = 0, we obtain:

W–H 0.0145− 0.0567i
EM with 50 roots 0.0140− 0.0569i
EM with 200 roots 0.0144− 0.0568i

while, for kh = 0.78, σ = 0.00032, c/h = 0.92,
θinc = 0, we obtain:

W–H 0.4969− 0.1095i
EM with 50 roots 0.4963− 0.1121i
EM with 200 roots 0.4967− 0.1102i

It can be seen that the results using EM agree
with those from the W–H approach but the con-
vergence of EM is very slow (relative errors of
0.24% and 0.14% for 200 roots in the examples
above). The behaviour of |R∞| for different pa-
rameters is shown in figures 1 and 2.

The fourth decimal place accuracy can be ob-
tained by the semi-infinite-plate residue calculus
in the examples above by truncating the series
(6) at only n = 9 and n = 26, resp. This agree-
ment validates the applicability of the residue
calculus method (RC). For the finite plate with
a/h = 7.36 and the other data as in the first
example above, we obtain:

RC 0.0205− 0.0523i
RC 0th-term approx. 0.0206− 0.0617i
EM with 50 roots 0.0196− 0.0615i
EM with 200 roots 0.0199− 0.0614i

while for the second example with σ = 0.032 and
a/h = 10.78, we find:

RC 0.2916− 0.1926i
RC 0th-term approx. 0.2527− 0.1933i
EM with 50 roots 0.2549− 0.1966i
EM with 200 roots 0.2556− 0.1956i

It can be seen that the convergence of the EM
is even much slower for the finite plate and the
RC 0th-term approximation already yields more
accurate results than the EM with 200 roots!
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Fig. 1: |R∞| versus kh for σ = 0.01, θinc = 0 and
different c/h.
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Fig. 2: |R∞| versus kh for c/h = 0.8, θinc = 0 and
different σ.
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