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Background

This abstract describes our recent progress in developing a robust, efficient, flexible-order fi-
nite difference model for nonlinear water waves and their interaction with fixed and floating
structures. This builds on work which was presented at the 22nd and 23rd [1, 3] workshops.
The goal of this work is a computational tool suitable for large-scale prediction of nonlin-
ear wave-wave, wave-bottom and wave-structure interaction in the coastal and offshore
environment.

The method is presented in detail in [2, 4], which includes a stability and accuracy
analysis in both two- and three-dimensions, together with a range of validation tests that
confirm both the accuracy and the efficiency of the model. As demonstrated in [3, 4] the use
of multigrid preconditioning makes it possible to achieve an optimal scaling of the overall
solution effort, i.e. the effort scales directly with n the total number of grid points.

The next step in the development of the model is to include support for boundary-fitted,
curvilinear physical domains that can be mapped to a computational domain of logically
structured blocks. This will allow for the treatment of arbitrarily complex boundary ge-
ometries. Procedures for doing this have been established for many years, e.g. [7, 6]. As
a first-step, we consider one 2D transformation in the horizontal plane to allow treatment
of general fixed, bottom-mounted structures extending vertically troughout the depth of
the fluid. The bottom typography is also arbitrary. This opens a large class of coastal
geometries to a fully nonlinear analysis in the context of a potential flow and up to the
point of wave breaking.

Governing equations

A Cartesian coordinate system is adopted with the xy-plane located at the still water level
and the z-axis pointing upwards. The still water depth is given by h(x) with x = (x, y)
the horizontal coordinate. The position of the free surface is defined by z = ζ(x, t) and the
gravitational acceleration g = 9.81m2/s is assumed to be constant.

Assuming an inviscid fluid and an irrotational flow, the fluid velocity (u, w) = (u, v, w) =
(∇φ, ∂zφ) is defined by the gradient of a scalar velocity potential φ(x, z, t), where ∇ =
(∂x, ∂y) is the horizontal gradient operator. The evolution of the free surface is governed
by the kinematic and dynamic boundary conditions

∂tζ = −∇ζ · ∇φ̃ + w̃(1 + ∇ζ · ∇ζ), (1a)

∂tφ̃ = −gζ −
1

2

(

∇φ̃ · ∇φ̃ − w̃2(1 + ∇ζ · ∇ζ)
)

, (1b)

expressed in terms of the free surface quantities φ̃ = φ(x, ζ, t) and w̃ = ∂zφ|z=ζ . To find w̃
and evolve these equations forward in time requires solving the Laplace equation in the fluid



volume with a known φ̃ and ζ, together with the kinematic bottom boundary condition:

φ = φ̃, z = ζ, (2a)

∇
2φ + ∂zzφ = 0, −h ≤ z < ζ, (2b)

∂zφ + ∇h · ∇φ = 0, z = −h. (2c)

At the structural boundaries of the domain, the flow field must be everywhere parallel to
the solid boundary surfaces, implying the no-normal flow condition

n · (∇, ∂z)φ = 0, (x, z) ∈ ∂Ω, (3)

where n = (nx, ny, nz) is an outward pointing normal vector to the boundary surface ∂Ω.

The boundary-fitted coordinate transformation

We assume that the fluid is bounded by a set of lines drawn on the horizontal plane which
define surfaces extending vertically throughout the depth of the fluid. On a section of
the horizonatal plane we define a logically structured grid of points (x, y), for example as
shown in Figure 1. The transformations between the physical grid and the computational
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Figure 1: An example of a grid transformation.

unit-spaced square grid are given by

[ξ(x, y), η(x, y)], and [x(ξ, η), y(ξ, η)]. (4)

Using the chain rule for partial differentiation, the following covariant linear relation-
ships between the partial derivatives in the physical domain and those in the computational
domain can be developed

∂x = ξx∂ξ + ηx∂η, ∂y = ξy∂ξ + ηy∂η,

∂xy = ξxy∂ξ + ηxy∂η + (ξxηy + ξyηx)∂ξη + ξxξy∂ξξ + ηxηy∂ηη,

∂xx = ξxx∂ξ + ξ2

x∂ξξ + 2ξxηx∂ξη + ηxx∂η + η2

x∂ηη,

∂yy = ξyy∂ξ + ξ2

y∂ξξ + 2ξyηy∂ξη + ηyy∂η + η2

y∂ηη,

(5)

where the sub-scripts indicate partial differentiation. This set of operations defines how
to determine the usual Cartesian derivatives in the physical space via weighted operations
on a Cartesian grid in computational space. Since we are interested in computing all
derivatives in the computational space, we now express all derivatives of (ξ, η) by equivalent
combinations of derivatives of (x, y). These relations follow from the identity

[

ξx ηx

ξy ηy

] [

xξ yξ

xη yη

]

=

[

1 0
0 1

]

, ⇒

[

ξx ηx

ξy ηy

]

=

[

xξ yξ

xη yη

]

−1

(6)



which gives, for example: ξx = yη/J , J = (xξyη − xηyξ). Thus, the transformation weights
can all be determined by applying finite difference operators in the computational space
to the grid point positions (x, y). Since the weights are solely a function of the geometry
of the problem, they need only be determined once on a given fixed physical grid. For the
procedure to be robust and accurate however, it is important to avoid singular transforma-
tions. Although orthogonality is not required, the closer the grid is to orthogonal the more
accurate the approximations will be. A detailed discussion of grid generation can be found
in [6].

The transformation discussed above allows all horizontal derivatives to be determined
by finite difference approximations on the computational (ξ, η) grid. For the vertical coor-
dinate, we apply the σ-transformation discussed in detail in [2, 4, 1, 3].

σ ≡
z + h(x)

ζ(x, t) + h(x)
≡

z + h(x)

d(x, t)
. (7)

This maps the time-dependent moving free surface boundary to a fixed plane of the com-
putational space, and produces a set of time-dependent weights for the vertical derivatives
which are in terms of horizontal derivatives of h and ζ.

With this set of transformation, we avoid any issues associated with re-gridding, and
the discrete derivative operators need only be determined once in a pre-processing step.

Numerical solution

A method of lines approach is used for the discretization of the governing equations. For the
time-integration of the free-surface conditions (1) the classical explicit fourth-order Runge-
Kutta scheme is employed. For the spatial discretization, a grid of Nx×Ny points is defined
on the horizontal xy-plane at which the free surface variables ζ and φ̃ are to be evolved. For
the solution of the transformed Laplace problem, Nz points are defined in the vertical below
each horizontal free surface grid point, arbitrarily spaced in 0 ≤ σ ≤ 1. The grid in the
transformed domain is thus orthogonal and structured. Choosing r nearby points, allows
order (r− 1) finite difference schemes for the 1D first- and second-derivatives in (ξ, η, σ) to
be developed in the standard way using Taylor series expansion [5]. The resultant discrete
operators are then used to define the coordinate mapping of (5) and thus discretize (2) to
solve for φ. Nonlinear terms in the free-surface conditions are treated by direct product
approximations at the collocation points. At the solid boundaries of the domain, Neumann
conditions, (2c) and (3), are imposed using a ghost point technique which is important for
the overall robustness of the model as described in detail in [4].

To be able to optimize efficiency of the model for a given problem, the order of the spatial
discretization schemes is kept flexible. Thus, two convergence strategies are available,
namely, h- and p-adaptivity where either the spatial resolution or the order of the scheme
is increased respectively.

A preliminary calculations is shown in Figure 2. This case considers linear waves prop-
agating through a semi-circular channel. Figure 2(a) shows a snapshot of the solution with
waves entering the channel from the straight section at the top right and being absorbed in
the straight section towards the bottom left. Figure 2 (b) shows the computed wave eleva-
tion amplification factor in the curved section. Finally, Figures 2 (c) and (d) compare the
computed wave elevation with a semi-analytical solution along the innner and outer channel
perimeters respectively. At this point we have validated the method on simple geometries.



The next step is to test the algorithm on more complicated geometries and extend the idea
to multiple overlapping blocks. More results will be presented at the workshop.
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Figure 2: Propagation of waves through a semi-circular channel.
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