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Introduction 
 
In both numerical and physical wave tanks, tests in short transient wave packets have various 
advantages.  Response amplitude operators may be obtained over a broad frequency range from just 
one test, and problems associated with finite tank dimensions may be reduced if reflected waves 
have insufficient time to return to the test zone during the short experiment.  Furthermore, tests in 
focused wave groups (e.g. New Wave) can provide valuable information about nonlinear behaviour 
of fixed and floating bodies in extreme waves.  Radiation tests, in which a body is oscillated in 
otherwise still water, can also benefit from use of a compact focused group as the input motion time 
history.   
 
This abstract is concerned with the reflections which may still occur in such transient wave testing, 
if it proves impractical to test in a large enough physical or numerical tank.  The work is motivated 
by some experiments and nonlinear analysis for a structure with pronounced flare which undergoes 
transient forced oscillations at the free surface.  In an attempt to clarify some comparisons between 
the experimental and the nonlinear numerical analysis, a linear frequency analysis was conducted 
for the structure in a finite tank.  The linear transient response to the focussed group input was then 
obtained using an fft approach, with some artificial damping to limit the infinite resonant response 
peaks and hence to allow solution of the initial value problem using a finite length transform. 
 
Test configuration 
 
A cone has been tested in vertical oscillations on the centre line of a long tank of width 2.5m.  The 
tip of the cone was 148mm below the mean free surface, and as this was a right circular cone the 
radius at the waterline was also 148mm.  The vertical position w(t) of the cone followed the form of 
a Gaussian wave packet defined in terms of an amplitude spectrum W(ω) by 
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With this definition of the packet bandwidth σk, it maintained its shape as the central frequency ωk 
was varied in different tests.  In practice the Fourier transform was discretised over a finite range of 
frequency. Measurements were made of the vertical fluid force on the cone, and the relative vertical 
motion between the cone and its intersection with the actual free water surface. 
 
A nonlinear hydrodynamic analysis of this problem was undertaken using the boundary element 
method (BEM) described by Bai & Eatock Taylor (2006).  An important difference, however, was 
that the numerical tank was circular, with the radius of 1.25m matching the half width of the long 
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tank used for the experiments.  Figure 1 shows a comparison between experimental and nonlinear 
numerical results for the transient vertical fluid force and relative elevation on the cone, for two 
central frequencies ωk = kπ/3 rad/s with k = 3 and k = 7. The time axis is non-dimensionalised by 
the central period of the group, Τk=2π/ωk. Also shown are the corresponding results predicted by a 
linear analysis of the cone oscillating vertically in open water (no walls). The nonlinear features of 
the experimental trace are matched by the BEM analysis over the main central oscillations, and 
indeed throughout the whole record for the k=3 case. Beyond t/Tk=1.5 all three traces for force and 
elevation diverge for k=7: the experimental and nonlinear results show evidence of substantial (but 
different) reflections, while these are absent from the open water linear analysis: in that case the 
water returns to rest and the force to zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 

 

Figure 1. Force and relative elevation on cone oscillated by two Gaussian motion packets 
      (k=3 and k=7) 

k=3 k=7

k=7k=3

As part of an investigation of the nonlinear effects, we thought it would be useful to have a linear 
prediction for the oscillating cone in the same circular tank as used in the nonlinear model. One 
approach would simply be to linearise the nonlinear code. An alternative, adopted here, was to 
adapt the linear frequency domain analysis to deal with a closed tank. This provides a degree of 
independent checking of the nonlinear analysis, and is described next.  
 
Linear transient analysis 
The starting point was a linear frequency domain wave diffraction-radiation program (AXID) for 
vertically axisymmetric bodies. This was developed by Zietsman, using a finite element (FE) 
discretisation of the velocity potential φ1 in a region R1 close to the body surface SB, coupled with 
an eigenfunction series representation of the potential φ2 in the far field region R2, as described for 
the 2D plane problem by Eatock Taylor & Zietsman (1981). The boundary J between R1 and R2 is 
taken as a vertical circular cylinder, so that the eigenfunctions may be simply expressed in 
cylindrical polar coordinates. The finite element equations are then obtained from a variational 
formulation based on the functional: 
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Here SF1, denotes the free surface in region R1. The FE region is only required very close to the 
body, and a relatively small number of terms in the far field series (≈ 10) is sufficient to achieve an 
effectively converged representation of the wave field out to infinity. Quadratic isoparametric 
elements are used in AXID, and Figure 2a shows a suitable mesh for modelling the cone in the open 
sea. 
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Combining the resulting added mass and damping terms with the hydrostatic force, one obtains the 
RAO of vertical force on the cone when oscillated in otherwise still water. In the Gaussian packet 
defined in (1), the time history of this force is then: 
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The lines labelled ‘linear’ in Figure 1 result from the discretised form of (3), with F(ω) given by 
AXID for the cone in open water. As usual, care must be taken in the implementation of the FFT to 
avoid aliasing: one must for example ensure that the frequency spacing is small enough to provide a 
time history with a sufficient length on either side of the Gaussian packet to prevent corruption from 
the periodic wrap-around in the finite length transform.  
 
To investigate the effect of reflections in a tank, the functional Π was modified. With ∂φ1/∂n=0 one 
has the case of perfect reflections. It was easy to modify AXID to model this case, by setting the J 
integral to zero. For a circular tank of radius 1.25m, as modelled in the fully nonlinear BEM 
analysis, we used the FE mesh shown in Figure 2b (which despite some elements of poor aspect 
ratio was found to be suitable). Direct use of the resulting RAO, however, would cause problems in 
obtaining the transient solution with the method described above. The circular wall leads to 
standing waves, and infinite resonant peaks in the RAO at readily calculated frequencies. This is 
illustrated by Figure 3, which compares the force spectrum F(ω)W(ω) for the open sea and tank 
cases (normalised to a maximum of 1 in the open sea). In the limit of perfect reflections, an infinite 
comb of Dirac delta functions is embedded in the RAO F(ω). An infinite length inverse transform is 
then required if one wishes to investigate the initial value problem. 
 
 
 
 
 
 
 
 
 
 
         (a)            (b) 
 

Figure 2. AXID meshes: a) cone in open sea; b) cone in tank of radius 1.25m 

Figure 3. Force amplitude spectra (k=7): a) cone in open sea; b) cone in tank of radius 1.25m 



To overcome this difficulty, a “reflectivity” factor α was introduced as a multiplier of the J integral: 
α=1 corresponds to open sea and α=0 to a tank. It was found that by using a small value of α, and a 
correspondingly small frequency increment Δω in the FFT, it was possible to obtain converged 
results for the cone during oscillation by the Gaussian packet. Examples of results for forces, 
computed with different values of α and Δω, are shown in Figure 4. The four subplots may be 
considered in conjunction with Figure 1, which shows the linear predictions for the open sea (k=7) 
case (α=1). It should be noted that in each of the subplots of Figure 4 the line designated 
“nonlinear” is the same. Examination of the linear results in the range t/Tk>1.5 shows the influence 
of reflections building up as α is reduced, and convergence of the linear predictions as α→0. The 
importance of reducing the frequency increment Δω as α is reduced can be understood from Figure 
4c: in this case Δω  is too large, and non-physical oscillations can be seen in the initial stages of the 
time history (i.e. before the cone has started oscillating). 
 
A significant finding is that the converged linear results for the cone oscillating in the tank agree 
very well with the nonlinear predictions in the region away from the large primary peak at the focus 
point. This agreement has also been observed for the Gaussian packets with other central 
frequencies ωk.. This includes the interesting case of k=9, for which the effect of reflections is found 
to be small. 
 (a) α=0.5, Δω=0.01 (b) α=0.1, Δω=0.005 
 
 
 
 
 
 
 
 
 
 

(c) α=0.05, Δω=0.005 
 

(d) α=0.05, Δω=0.001 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Force time histories (k=7): nonlinear results compared with  
linear solutions in tanks with different reflectivity 
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