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Introduction

Alternative methods for evaluating steady free-surface flow about ships in deep water have been con-
sidered in the literature. These methods include semi-analytical theories based on various approximations
(thin-ship, slender-ship, 2d+t theories), potential-flow panel (boundary integral equation) methods that rely
on the use of a Green function (elementary Rankine source, or Havelock source that satisfies the radiation
condition and the Kelvin-Michell linear free-surface boundary condition), and computational fluid dynam-
ics (CFD) methods that solve the Euler or RANS equations. These alternative calculation methods are
reported in a huge body of literature, not reviewed here; a partial list of references may be found in e.g. [1].

Selection of a flow calculation method involves considering a tradeoff between competing requirements
with respect to accuracy and practicality. Indeed, practical tools that are simple to use and highly efficient,
but need not be highly accurate, are required to quickly evaluate the large number of alternative designs
that typically need to be considered for early design stages (concept and preliminary design) and for hydro-
dynamic optimization. On the other hand, detail design and design evaluation involve many fewer choices
and require more accurate computational tools, for which efficiency and ease of use are less important.

Thus, highly-efficient (in terms of user input time and CPU) and robust approximate methods remain
important for many practical applications, notably for early design stages and for hull-form optimization;
e.g. [2,3] . A classical type of approximate methods are potential-flow panel methods based on a Green
function that satisfies the radiation condition and the Kelvin-Michell linear boundary condition at the free
surface. A major recommendation of this approach is that flow in an unbounded 3D flow domain is for-
mulated over a finite 2D boundary surface. However, this simplification comes at the price of a relatively
complicated Green function. But how complicated does this “free-surface Green function” need to be?

The “steady free-surface flow Green function” can be expressed as the sum of three components: (i)
a wave component given by a single Fourier integral with continuous integrand, (ii) the fundamental free-
space Green function−1/r wherer is the distance between the source pointx and the flow-field point̃x
in the Green functionG(x ; x̃) , and (iii) a local-flow component that is given by a double Fourier integral
with singular integrand. This singular double Fourier integral can be transformed into a single integral, with
integrand expressed in terms of the exponential integral with complex argument. Three alternative single-
integral representations of the local-flow component are given in [4] , and nearfield and farfield asymptotic
approximations are given in [5-8] . Approximations based on polynomial expansions [8] or table interpola-
tions [9-11] in complementary separate regions of the flow domain have also been given. Simple analytical
approximations — valid within the entire flow region — to the local-flow component have recently been
given for two special cases that correspond to thin-ship theory [12] and to flow about air-cushion-vehicles
and planing boats [13] , for which we have eithery − ỹ = 0 or z + z̃ = 0 , respectively.

Extension of the simple expressions given in [12,13] to the general case of arbirary location of the source
pointx and the flow-field point̃x is considered here. Thus, steady potential flow about a ship, of lengthLs ,
that advances in calm water (of effectively infinite depth and lateral extent) with constant speedVs along
a straight path is considered. TheX axis is taken along the path of the ship and points toward the ship
bow. TheZ axis is vertical and points upward, and the mean free surface is taken as the planeZ = 0 .
The flow is observed from a moving system of coordinates attached to the ship and thus appears steady.
Nondimensional coordinatesx ≡ (x , y , z) ≡ (X,Y , Z )/L ref are defined in terms of a characteristic
reference lengthLref , e.g. the ship lengthLs . The Froude numberF is defined as

F = Vs/
√

gLref (1)

whereg stands for the acceleration of gravity.



Simplified Green function for steady flow at the centerplane of a thin ship

Within the theoretical framework of Michell’s classical thin-ship approximation, the flow due to a ship
is represented in terms of a distribution of sources at the ship centerplaney = 0 . Furthermore, the free-
surface elevation along the ship waterline and the pressure at the ship hull can be evaluated at the ship
centerplanẽy = 0 . Thus, the Green function of thin-ship theory corresponds to the special casey − ỹ = 0
of the Green functionG(x ; x̃) , i.e.G ≡ G(x, z ; x̃, z̃ ) ≡ G(x− x̃, z + z̃ , z− z̃ ) . A simple approximation
to the Green function of thin-ship theory is given in [12]. This simplified Green function is

4πG ≈ H(x− x̃)
8
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(2)

Here,F is the Froude number (1) and the functionΛ in the wave component filters unrealistic and irrelevant
short waves fort∞ ≤ t < ∞ .

Simplified Green function for steady flow due to a free-surface pressure patch

Within the context of linearized potential-flow theory, flows about air-cushion vehicles, planing boats
and some types of hybrid ships can be represented in terms of a pressure distribution at the mean free-
surface planez = 0 . Furthermore, the free-surface elevation can be evaluated at the planez̃ = 0 . Thus, the
Green function for steady flow due to a free-surface pressure patch corresponds to the special casez+ z̃ = 0
of the Green functionG(x ; x̃) , i.e.G ≡ G(x, y ; x̃, ỹ ) ≡ G(x− x̃, y− ỹ ) . A simple approximation to the
Green function for steady flow due to a free-surface pressure patch is given in [13]. This simplified Green
function is

2πG ≈ H(x− x̃)
2
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As in (2), F is the Froude number (1) and the functionΛ in the wave component filters unrealistic and
irrelevant short waves fort∞ < |t | .

Simplified Green function for steady flow about an arbitray ship hull

[12] and [13] show that flow calculations based on the highly simplified Green functions (2) or (3)
and corresponding more accurate Green functions are indistinguishable. The simple Green functions (2)
and (3) can then be used in practice. The Green functionG(x ; x̃) is now considered for the general case
−∞ < x− x̃ < ∞ ,−∞ < y − ỹ < ∞ ,−∞ < z + z̃ ≤ 0 .

Expressions (7) in [4] and (1) and (3) in [7] , or expressions (13)–(16) and (18a) in [11] yield

4πG = H(x− x̃)
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r in (4) andr1 , ψ andL′ in (5) are defined as
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a ≡ |x− x̃ |/F 2 b ≡ |y− ỹ |/F 2 c ≡ −(z + z̃ )/F 2 d ≡
√

a2 + b2 + c2 ≡ r1/F 2 (7c)

Expressions (7c) show that the coordinatesa, b, c and the related distanced are positive real numbers.
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Figure 1: FunctionL ≡ [ 1 + ψ/(1 + d) ]/(1 + d) + L′ with L′ evaluated using the (exact) integral
representation (7) or the simple approximation (11) in the three particular casesa = 0 (left), b = 0 (center)
andc = 0 (right), i.e. forx− x̃ = 0 , y − ỹ = 0 andz + z̃ = 0 .

The integral representation (7), whereE1(·) is the usual exponential integral andγ = 0.577 . . . is
Euler’s constant, is well suited for numerical evaluation in the nearfield, i.e. for small and moderate values
of d , but is not suitable for large values ofd, i.e. in the farfield. Expressions (12)–(15) in [9] or (15) and
(20a) in [11] yield the farfield approximation
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d 2
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− c/d

1+ a/d

)
as d →∞ (8a)

This approximation shows thatL′ = O(1/d 3) asd → ∞ with b = 0 andc = 0 , i.e. in the farfield along
thex axis. In fact, (16) in [12] yields

L′∼ −1/d 3 as d →∞ with b = 0 = c (8b)

Expression (5) in [7] yields the nearfield approximation
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Let d , a, b, c be expressed as

d = ρ/(1− ρ) a = α d b =
√

1− γ2
√

1− α2 d c = γ
√

1− α2 d (9a)

where0 ≤ ρ ≤ 1 , 0 ≤ α ≤ 1 and0 ≤ γ ≤ 1 are defined as

ρ ≡ d/(1+ d) α ≡ a/d γ ≡ c/
√

b2+ c2 (9b)

The local-flow componentgL ≡ F 2GL in (4) can be expressed as

gL≡ 1/d− 2L with L ≡ [ 1+ ψ/(1+ d) ]/(1+ d) + L′ (10)

where the identityr1 = F 2d was used andL′ is a function of the three variablesρ , α , γ defined by (9b).
Expressions (10) and (8) yieldgL ∼ 1/d asd → 0 , andgL ∼ −1/d asd → ∞ . Furthermore, we have
L′/gL = O(d 2) asd → 0 , andL′/gL = O(1/d 2) asd → ∞ with b = 0 andc = 0 (along thex axis).
Thus, we haveL′ ¿ gL in both the nearfield and the farfield.

The ‘exact’ and ‘approximate’ functionsL defined by (10) withL′ evaluated using the exact integral
representation (7) or the simple approximation

L′ ≈ {[ 4− 2 ρ + 24 ρ2 + (1+ 37ρ− 62 ρ2)γ ](1− α)− (4− 5ρ + 6ρ2)(1− ρ)α} ρ (1− ρ)2/5 (11)

are depicted in Fig.1 for0 ≤ ρ ≤ 1 in the three particular casesa = 0 , b = 0 andc = 0 , i.e. forx− x̃ = 0 ,
y − ỹ = 0 andz + z̃ = 0 . The figures forb = 0 andc = 0 ( in the center and on the right of Fig.1)
correspond to Fig.7 in [12] and Fig.7 in [13] , respectively, and to the Green functions of thin-ship theory
and the theory of flow due to a free-surface pressure patch considered in these two previous studies. The
center and right figures in Fig.1 and Figs.7 in [12] and [13] show that the approximation (11) for the general



casea 6= 0 , b 6= 0 , c 6= 0 is no less accurate than the approximations given in [12] and [13] for the special
casesb = 0 or c = 0 , respectively.

Conclusion

Expressions (5) , (11) and the relationr1 = F 2d finally show that the local-flow componentGL in (4)
can be approximated as
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wherer1 andψ are given by (6) andP is defined as

P ≡ [4F 4 + 6F 2r1 + 26r2
1 + (F 4 + 39F 2r1− 24r2

1 )γ ](1− α)− F 2 4F 4 + 3F 2r1 + 5r2
1
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with 0 ≤ α = |x− x̃ |/r1 ≤ 1 0 ≤ γ ≡ −(z + z̃ )/
√

(y − ỹ )2 + (z + z̃ )2 ≤ 1 (12c)

The Green functionG defined by (4) with (12) and (6) is considerably simpler than the alternative ex-
pressions given in the literature. In particular, the singular double Fourier integral that defines the local-flow
component in the classical representations given in the literature is approximated by the simple expression
(12) within the entire flow domain0 ≤ r1 ≤ ∞ . Although the local-flow component (12) is not highly
accurate, as shown in Fig.1, the calculations reported in [12,13] for the related approximations (2) and (3)
show that the general approximation (12) can be expected to be sufficient for practical applications. This
result stems from two main properties: (i) the contribution of the wave component in (4) typically is more
important than that of the local-flow component, and (ii) the approximate local-flow component (12) is
asymptotically correct in both the nearfield and the farfield. Furthermore, the approximation (12) is most
accurate forx − x̃ = 0 , as can be seen from the left figure in Fig.1, and in the farfield limitr1 → ∞ with
a = 1 , i.e. along thex axis; a useful property for practical applications to typical slender ships.
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