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1 Introduction

This paper is devoted to the non-linear response of an infinite ice sheet to a steady moving load
in the time-domain using the higher order spectral method.

The linear problem has been well addressed (see e.g. Schulkes and Sneyd [7] in two di-
mensions) and predicts an infinite deflection at the critical speed. Experimental measurements
of loads moving on ice e.g. [4] and [5] showed that there was good agreement between the
linear theory and measurements except at the critical speed. While the experimental solutions
presented a sharp peak close to the critical speed the solution remain finite.

Various theories have been proposed to better understand the solution close to the critical
speed. Wang et al. [8] considered a visco-elastic model for the ice and showed that under
these assumptions the response is finite for all speeds. Miles and Sneyd [9] considered the
motion of an accelerating pressure (as opposed to one moving with constant velocity) and
solved using a Fourier transform in space and a Laplace transform in time. They showed that
the solution remains bounded if accelerated through the critical speed. Recently Parau and
Dias [3] considered the two dimensional non-linear problem of a steadily moving load on ice at
a subcritical speed. They transformed the problem into a dynamical system formulation and
solved the obtained non-linear Schrödinger equation to find solitary wave solutions provided
the speed was close to but smaller than the critical speed.

We consider the non-linear problem of the time-dependent motion of a moving load studied
in more details in [1]. We show how the solution can be found using a modification of the higher
order spectral method initially presented in [2] and [6]. This method uses a spectral expansion
coupled with the fast Fourier transform to rapidly calculate the Dirichlet to Neuman map at
the non-linear free-surface. The HOS method have proved useful for a variety of problems
such as numerical wave tank modeling [11], freak wave formation [10] and incident wavefield
estimations for seakeeping simulations [12]. The method is ideally suited to the problem of
moving loads on ice by simply adding the non-linear flexural rigidity term in the dynamic free
surface condition.

2 Modeling

An elastic plate floats on the surface of an inviscid and irrotational fluid which is infinite in
the x-direction and has finite depth in the z direction. The ice sheet covers the entire water
surface which is at z = ξ, where ξ is the displacement of the ice, and the bottom surface of
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the fluid is at z = −h. The fluid is governed by Laplace’s equation with a no flow condition at
z = −h, and φ denotes the velocity potential in the fluid. At the ice-water interface we have
a kinematic equation from the continuity of normal velocity and a dynamic equation from the
pressure forces which are given by the non-linear Bernoulli equation and by the bending force
of the plate and the pressure applied on the plate. The latter may be written as

ρφt +
1

2
ρ |∇φ|2 + ρgξ + D∆

∆ξ
(

1 + |∇ξ|2
)3/2

= −p(x, t), z = ξ (1)

where ρ is the density of the plate, D is the bending rigidity of the plate and p is the applied
external pressure. Note that we have set the inertia term to be zero.

We further scale the length by L = (D/ρg)1/4, time by T =
√

L/g and the mass by
M = ρL3. We also introduce the free surface potential φs(x, t) = φ(x, ξ, t) and the vertical
velocity W (x, t) = φz(x, ξ, t). We consider a line pressure travelling at speed U . This gives us
p (x, t) = δ (x − Ut) f (t) where f is some arbitrary function. In a moving frame with velocity
U the non-linear equations become

∂tφs = U∂xφs −
1

2
|∇φs|

2 − ξ +
1

2
N W 2 − ∆

(

∆ξ

N3/2

)

− δ (x) f (t) , z = ξ (2)

∂tξ = U∂xξ + N W −∇ξ.∇φs, z = ξ (3)

where N = 1 + |∇ξ|2.

2.1 Higher order spectral method

The domain is supposed finite in the horizontal direction and a periodic condition is assumed
at the horizontal boundaries. In such a case it is straightforward to express ξ and φs in a
discrete Fourier domain. We solve these equations in time domain: assuming we know φs and
ξ at time t, the free surface boundary conditions are used to evaluate the time derivatives of
ξ and φs. In the latter conditions, the only remaining unknown is W , that is approximated
by the high-order spectral (HOS) method. The latter was developed independently in [2] and
[6] to simulate non-linear free-surface waves and uses a spectral expansion and the fast Fourier
transform coupled with a modified Taylor series expansion to derive a very efficient way of
computing the Dirichlet to Neumann map on the free surface (which is not assumed to lie on
z = 0 as in the linear theory). The vertical velocity W is evaluated at order M in powers of ξ
and related terms as NW and NW 2 are estimated consistently at order M as in [6].

2.1.1 Flexural rigidity

The non-linear flexural rigidity of the ice sheet is taken into account in the free surface equation
for φst by the term ∆

(

N−3/2 ∆ξ
)

= A∆2ξ + 2∇A .∇∆ξ + ∆A ∆ξ where A = N−3/2. For
consistency with the HOS method, the three curvature related terms A, ∇A and ∆A are
further expressed as Taylor expansions in ξ as follows

A = 1 −
3

2
|∇ξ|2 +

15

8
|∇ξ|4 −

35

16
|∇ξ|6 . . . C = (∇ξ .∇)∇ξ

∇A = B C B = −3

(
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5

2
|∇ξ|2 +
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8
|∇ξ|4 . . .

)

∆A = ∇B .C + B ∇ .C ∇B = 15

(

1 −
7

2
|∇ξ|2 . . .

)

C

The order of the three expansions is chosen adequately so that the flexural term is of order M
in the dynamic boundary condition. For instance, the expansions presented above are valid for
M = 7. Operators ∇ and ∆ are evaluated in the Fourier space.
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(a) Comparison with Parau and Dias results.
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Figure 1: Maximum deflection at subcritical speeds.

2.1.2 Numerical model

The linear part of the equations 2 and 3 is analytically integrated in the moving frame except
for the pressure term. The latter may be chosen with any given time evolution and we prefer
to integrate its contribution numerically. Hence the pressure and non-linear evolution of the
system are integrated numerically using a fourth-order Runge-Kutta Cash-Karp scheme with
adaptive time step size.

The non-linear products involved in the free surface boundary conditions 2 and 3 are com-
puted in the physical space. This leads to the well-known aliasing phenomenon which has to be
addressed to preserve accuracy. In general, dealiased computations can be obtained by using
spectra extended with zero padding. The number of collocation points in the physical space is
then to be adequately determined for removing aliasing errors made on multiple products. The
latter products are found in the free surface boundary conditions on the one hand, and within
the iterative HOS obtention of W on the other hand. They are M -products at most (products
involving M terms). Applying the half rule, the number of points to use in the physical space
(Nd

x) to get a full dealiasing is Nd
x = Nx(M + 1)/2.

3 Results

We begin here to compare our model to the solitary wave solution of Parau and Dias [3] when
the velocity approaches the critical speed. Figure 1(a) shows the deflection measured at x = 0
against cmin − U . In the first place we linearised their solitary wave solution for small pressure
forcing and found a correct agreement with M = 1 in our model. Both solutions predict the
linear blow up at U = cmin. Secondly, the non-linear simulation with M = 5 and the solitary
solution found a finite non-linear deflection for a pressure P = 0.017 at critical speed. Figure
1(b) shows the normalised deflection at x = 0 when the velocity is slowly increased from 0.8 to
1.25 (cmin = 1.32) for higher pressures. The lowest pressure case (linear) clearly shows the one
half inverse power law (cmin − U)−1/2 predicted by linear theory. When the pressure increases
however, the maximum deflection departs from this kind of law. The closer the velocity to the
critical speed the more pronounced the departure. With non-linear effects taken into account
one may observe normalised deflections more than twice as high as the linear prediction.

Finally the model is used to predict the evolution of the deflection at critical speed with
a pressure P = 0.025. Figure 2(a) shows the deflection at x = 0 against time. The linear
t1/2 increase is correctly reproduced until t = 500 when the non-linear effects kick in. The
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(b) Spatial envelope of the deflection.

Figure 2: Evolution of the deflection at critical speed U = cmin.

deflection then reaches a non-linear stationary value at t = 2000. Figure 2(b) shows the steady
state reached on each side of the line load.

The model developed here in two dimensions may be extended to three dimensions for
comparisons with experiments.
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