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Introduction

Polynyas are openings or lakes in sea-ice that are of considerable current interest because of their probable prolifera-
tion due to global warming. This paper focuses on polynyas located in continuous ice, which are stable features that
are common near the coast of Antarctica and off the Arctic land masses where they are created by offshore winds or
upwelling or a combination of both. They also frequently occur in the near-continuous sea-ice of the Arctic Basic
when divergent natural stresses open up the ice canopy.

Close to the open ocean the ice-cover is composed of relatively small floes and is highly energetic, as waves
constantly fracture, break-up and redistribute it. Further into the region of ice-covered fluid the structure is more
stable, as the wave energy there has reduced sufficiently to allow floes to exist at vast sizes and become near
continuous. In this region and for greater penetrations, wave energy induces sea-ice to bend and flex rhythmically,
with the subsequent oscillations at the fluid-ice interfacebeing described as flexural-gravity waves. When a flexural-
gravity wave interacts with a polynya it will simultaneously disturb the free-surface it encloses and be scattered away
from the polynya into the surrounding ice-covered fluid region. Mathematical modelling of scattering by polynyas
is particularly important, as they offer the best current possibility for performing in-situ field tests to validate theory.
Such data are notably lacking from the majority of research in this area.

At present, theoretical work on the scattering by ice floes orirregularities in ice sheets is largely focussed on
solving problems involving only two spatial-dimensions (see Squire, 2007). Due to the existence of analytical
techniques such as Wiener-Hopf or residue calculus, a lot ofprogress can be made before resorting to numerical
methods. Other more numerical approaches, such as those based on mode-matching, are also very efficient and are
extremely easy to set up.

It is widely recognised that including the third spatial-dimension is necessary to properly simulate scattering in
regions of sea-ice. However, this generally makes an analytical solution impossible to find and greatly increases the
difficulty involved in obtaining a numerical solution. Notable work on scattering by three-dimensional geometries
includes Meylan (2002) for finite floes and Porter and Evans (2007) for finite cracks.

In this paper we consider the scattering of flexural-gravitywaves by a polynya of arbitrary shape. The solu-
tion method that we employ involves an approximation of the vertical motion by the single-mode that supports
propagating waves. Inserting this into a variational principle eliminates the depth dependence and reduces the full
three-dimensional boundary-value problem to a small system of two-dimensional Helmholtz equations. For more
simple geometries this method has been shown to give high accuracy and it can be easily extended to the full-linear
solution at the cost of increased numerics (see Bennetts et al., 2007). The two-dimensional system that remains for
the polynya is reformulated via Green’s theorem into a set ofone-dimensional integro-differential equations that are
solved using a Galerkin scheme.

Preliminaries and approximation
Consider a three-dimensional geometry that is comprised ofa fluid domain of finite depth and that extends to infinity
in all horizontal directions, and an ice-sheet of constant thicknessD that covers it. Let the Cartesian coordinates
x = (x, y) define the horizontal plane and letz be the vertical coordinate, which points upwards and has itsorigin
set to coincide with the equilibrium surface of the fluid. Theice covering exists at all pointsx except for within
a finite regionx ∈ Ω0 representing a polynya, in which the fluid surface is unloaded. We allow the shape of the
polynya to be arbitrary, although we suppose that it is enclosed by the smooth contourΓ = Γ(s) (−L < s < L),
with outward normal vectorn = (cos Θ, sin Θ) and tangential vectors = (− sin Θ, cos Θ) (Θ = Θ(s)). If the bed
depth is denoted byh and the equilibrium submergence of the ice byd then the fluid domain occupiesz ∈ (−h, 0)
for x ∈ Ω0 andz ∈ (−h,−d) for x /∈ Ω0. Bothh andd are assumed to be constant and we setd = ρi/(ρwD),
whereρi = 922.5 kg m−3 andρw = 1025 kg m−3 are the densities of the ice and water respectively, to ensure that
the ice is neutrally bouyant.

When the system is in motion the ice experiences small-scaleoscillations and, assuming harmonic time de-
pendence, the position of the underside of the sheet is givenby z = −d + ℜe(W e−iωt). Hereω is a prescribed
angular frequency andW = W (x) is the displacement function, which is currently unknown. We also make
the regular assumptions of linear motions so that the velocity field of the fluid may be retrieved from(∂x, ∂z) ·



ℜe((g/iω)Φ̂(x, z)e−iωt), where the unknown function̂Φ = Φ̂(x, z) is thevelocity potentialand the constantg =
9.81 m s−2 denotes acceleration due to gravity.

At this point we choose to partition the solution into the respective ice-covered and ice-free fluid regions and to
restrict the vertical motion in each region to the single mode that supports propagating waves therein. To do this we
approximate the velocity potential using

Φ̂(x, z) ≈ φ(x) cosh{k(z + h)} (x ∈ Ω0), Φ̂(x, z) ≈ ψ(x) cosh{κ(z + h)} (x ∈ Ω1), (1)

whereΩ1 = R
2\Ω0 defines the region of ice-covered fluid. This leaves us to find the functionφ = φ(x) in Ω0 and

ψ = ψ(x) in Ω1, both of which exist only in the horizontal plane. It is possible to extend the approximation (1) to
gain the full-linear solution to an arbitrary degree of accuracy by adding in the modes that support evanescent waves
and this work is currently in preparation.

In the above, the quantityk is the propagating wavenumber within the polynya, and is calculated as the positive,
real root of the free-surface dispersion relationk tanh(kh) = σ, whereσ = ω2/g. Similarly, κ is the propagating
wavenumber when the fluid is ice-covered, which is the only positive real root of the ice-covered dispersion relation

(1 − σd+ βκ4)κ tanh(κH) = σ, (2)

whereH = h − d is the fluid depth beneath the ice. In equation (2) the properties of the ice appear throughd and
β = ED3/12(1 − ν2)ρwg, which is a scaled version of the flexural rigidity of the ice;in addition,E = 5 × 109 Pa
andν = 0.3 are the Young’s modulus and the Poisson’s ratio respectively.

The system of ice and fluid is forced by a plane incident wave that propagates towards the polynya from the
far-field |x| → ∞ at the oblique angleϑ ∈ (0, 2π) with respect to thex-axis. Due to our choice to base our
approximation on the vertical mode that supports propagating waves, the incident wave can be represented exactly
in Ω1 and we write it asψI cosh{κ(z + h)} whereψI = eiκ(x cos ϑ+y sinϑ).

Combining the approximation (1) with a variational principle, which is equivalent to the governing equations of
the full-linear problem, produces a set of equations to be satisfied by the functionsφ andψ. Within the polyna this
dictates that, if we denote∇ ≡ (∂x, ∂y), the functionφ satisfies the the second-order differential equation

∇2φ+ k2φ = 0 (x ∈ Ω0). (3a)

In the region of ice-covered fluid the variational principlealso creates an approximation of the displacement
functionw ≈ W indirectly through its association to the velocity potential. We write the equations to be satisfied
by ψ andw as the second-order system

∇2Ψ + CK2C−1Ψ = 0 (x ∈ Ω1), (3b)

where the vector of unknowns isΨ = (ψ,w, ŵ)T and we have introduced the notationŵ ≡ β∇2w for convenience.
In equation (3b) the matrixK = diag{κ, µ1, µ2} contains the propagating wavenumber in the ice,κ, and values
µj that define (typically) oscillatory-evanescent waves scattered by the polynya. These quantities are calculated as
the rootsµ of the quartic equation(βµ4 + 1 − σd) + 2βκ sinh(2κH)(κ2 + µ2)/a+ = 0 that exist in the upper-half
plane, where the constanta+ =

∫
−d

−h
cosh2{κ(z + h)} dz. The matrixC contains the eigenvalues of the system and

is defined asC = [c(κ), c(µ1), c(µ2)] wherec(u) = (1, u sinh(uH)/σ,−βu3 sinh(uH)/σ)T .
The approximate velocity potentials are linked at the boundaryΓ by the jump conditions

p−φ = p+ψ, (a−/p−)∂nφ = ∂nψ, (4)

where the known valuesp− =
∫
−d

−h
cosh{k(z + h)} cosh{κ(z + h)} dz anda− =

∫ 0

−h
cosh2{k(z + h)} dz, and

∂n ≡ n · ∇ is the normal derivative. The ice must also experience no bending moment or shearing stress at the edge
of the polynya, and this is expressed as

ŵ − (1 − ν)β(∂2
s + Θ′∂n)w = 0, ∂nŵ + (1 − ν)β∂s(∂s∂n − Θ′∂s)w = 0, (5)

respectively, where∂s ≡ s·∇ is the tangential derivative. In the far-field|x| → ∞ the regular Sommerfeld radiations
condition must be applied toψ.



Integral equations
In order to solve the problem posed by the differential equations (3a-b) we use Green’s theorem to reformulate
them into integral representations that may then be matchedon their common boundaryΓ. Beginning with the
free-surface equations within the polynya, we may write

ǫφ(x) =
1

4i

∫
Γ

{(∂NH0(kr))φ(X) − H0(kr)(∂Nφ(X))} dS (x ∈ Ω0), (6a)

in which H0 denotes the Hankel function of the first kind of order0 and the quantityǫ is defined asǫ = 1
2

(x ∈ Γ)
andǫ = 1 (x /∈ Γ). Our integration parameters are defined through the source variableS, which corresponds tos,
so that the curveΓ = Γ(S), and the coordinate vectorX = X(S) ∈ Γ then corresponds to the Cartesian coordinates
x. The normal derivative of the source variables is∂N andr ≡ |x − X| defines the distance between the field and
source variables.

Similarly, outside of the polynya, in which the velocity potential is coupled to the interfacial displacement we
derive the representation

ǫΨ(x) = ΨI(x) −
1

4i
C

∫
Γ

{(∂NH0(Kr))C−1Ψ(X) −H0(Kr)C−1(∂NΨ(X))} dS (x ∈ Ω1), (6b)

where the diagonal matrixH(Kr) = diag{H0(κr),H0(µ1r),H0(µ2r)} and the vectorΨI = C(ψI , 0, 0)T contains
the contribution of the incident wave.

Now, lettingx → Γ in the above integral representations and applying the jumpconditions (4) gives rise to a
system of integral equations, which we write as

u(s) =

∫
Γ

{m0,0(s|S)u(S)−m0,1(s|S)v(S)} dS, u(s) = uI(s)−

∫
Γ

{M1,0(s|S)u(S)−M1,1(s|S)v(S)} dS. (7)

These equations are to be solved for the vectors of functionsu = (u, [w]Γ, [ŵ]Γ)T andv = (v, [∂nw]Γ, [∂nŵ]Γ)T

in which u = p−[φ]Γ = p+[ψ]Γ and v = (a−/p−)[∂nφ]Γ = [∂nψ]Γ, and where[·]Γ denotes that the included
quantity is evaluated on the contourΓ. We also define the scalar Kernelsm0,0 andm0,1 as 2∂NH0(k|s − S|)
and2(p2

−
/a−)H0(k|s − S|) respectively, and the3 × 3 matrix KernelsM1,0 andM1,1 as2∂NH0(K|s − S|) and

2PH0(K|s− S|) respectively, whereP = diag{p+, 1, 1}. The system is forced by the vectoruI = 2P [ΨI ]Γ.
Application of the bending moment and shearing stress conditions (5) allows the removal of̂w and∂nŵ from

(7) and in-doing-so reduces the unknowns present in the above integral system to the appropriate number to match
the equations. An integro-differential system remains to be solved for the functionsu, v, w and∂nw, from which
we may then obtain the corresponding values ofŵ and ∂nŵ. Once the values of the unknown functions have
been obtained on the boundaryΓ, their values throughout the domain in which they exist may be found using the
appropriate integral representation of (6).

In order to solve the system of equations that we have generated on the boundaryΓ we invoke a Galerkin scheme
with exponential basis functions. The unknowns are therefore expanded in terms of the orthogonal set{χm : m ∈
R} whereχm = χm(s) = (1/2L)eiλms andλm = mπ/L, so thatu(s) =

∑
umχm(s), v(s) =

∑
uvχm(s),

w(s) =
∑
wmχm(s) and∂nw(s) =

∑
ωmχm(s). We then truncate this representation to the dimension2M + 1

that achieves sufficient accuracy and solve for the constantsum, vm, wm andωm (m = −M, . . . ,M).
By taking the inner-product of the equations with each of thebasis functionsχm (m = −M, . . . ,M) in turn, we

derive the set of coupled equations

un =
M∑

m=−M

{〈〈m0,0〉〉m,num − 〈〈m0,1〉〉m,nvm}, ũn = uI,n −
M∑

m=−M

{〈〈M1,0〉〉m,nũm − 〈〈M1,1〉〉m,nṽm} (8)

for n = −M, . . . ,M , where〈〈F 〉〉m,n =
∫ L

−L

∫ L

−L
F (s|S)χm(S)χn(s) dS ds. Within these equations we have

the bending moment and shearing stress conditions embeddedthrough our definitions of̃un and ṽn which are
(un, wn,−(1−ν)β{λ2

nwn−
∑

m〈Θ
′〉m,nωm)T and(vn, ωn,−(1−ν)β{λ2

nωn−
∑

m〈Θ
′′−iλnΘ′〉m,nwm)T respectively,

where〈f〉m,n =
∫ L

−L
f(S)χm(S)χn(S) dS.

Equation (8) represents a linear system of4(2M + 1) equations to be solved for the constantsum, vm, wm and
ωm that define the Galerkin approximations. For a smooth curve,such asΓ, all of the inner-products needed to
form these equations incorporate only integrable functions and they may therefore be straightforwardly calculated
by numerical means. It is also possible to consider non-smooth curves by using integration by-parts to eliminate the
singularities that are introduced. This extension will appear in a forthcoming work.
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Figure 1: Part (a) shows the scattering cross-sectionS against non-dimensional wavenumberκh for three ellipses.
Part (b) is a contour plot of the response of a polynya to an incident wave of non-dimensional length100/h. The
elevation of the free-surface within a polynya (solid contours) and the diffracted wave in the surrounding ice-covered
fluid (broken contours) are both plotted.

Numerical results
The above figures display two sets of numerical results produced using the theory outlined in this work. All spatial
parameters are non-dimensionalised with respect to the depth h and in both sets of results we fixD/h = 0.05.

For the first set of results we consider the far-field responseinduced by elliptical polynyas. Using the asymptotic
behaviour of Hankel functions for large arguments in expression (6b), we may deduce that, in terms of the polar
coordinates(r, θ), the diffracted wave may be written asψ − ψI ∼ (2/πκr)1/2eiκ(r−π/4)F(θ) asr → ∞. Here, the
functionF is known as adiffracted far-field amplitudeand is readily calculated.

Figure 1(a) displays thescattering cross-sectionS = (1/2π)
∫ π

−π
|F|2 dθ as a continuous function of the non-

dimensional wavenumberκh for three elliptical polynyas, where the incident wave propagates at an angleϑ = 30◦.
The ellipses are defined byx/0.2h = (a cos(sπ/L), b sin(sπ/L)), where the ratioa/b is chosen to define the
eccentricity. The unmarked curve denotes the results for a circle (a = b = 1), the dotted curve the ellipse with
(a, b) = (1, 0.25) and the curve with crosses(a, b) = (0.25, 1).

For low frequencies, although the three curves are similar there is a striking difference in their structure around
the pointκh ≈ 0.6, at which the minimum appearing for the circular polynya compares to the inflections seen
for the elliptical polynyas. Away from this feature, as would be expected, the circular polynya generally produces
a diffracted wave of a larger amplitude. The values of the scattering cross-section grow with wavenumber until
κh ≈ 1.25, at which point they level out and experience the fine structure familiar in far-field responses at high
frequencies.

Figure 1(b) gives a contour plot showing the reponse of a moreunusual shape and one that better represents a
real polynya. This is defined by the curvex/0.2h = (r cos(sπ/2L), r sin(sπ/2L)), where the radial coordinate is
r = cos3(sπ/2L) + sin3(sπ/2L), and it is shown by the thick line on the figure.

In the case depicted, the incident wave is of non-dimensional length100/h and is set to unit amplitude. Within
the polynya, the solid contours denote the level surfaces ofthe wave elevation att = 0, with the broken contours
outside of the polynya, likewise the elevation of the surrounding fluid-ice interface induced by the diffracted wave
at t = 0. Only 21 basis functions(M = 10) were required to ensure convergence and energy conservation.
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