An approximation to wave scattering by an ice polynya
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I ntroduction

Polynyas are openings or lakes in sea-ice that are of caasildecurrent interest because of their probable prolifera
tion due to global warming. This paper focuses on polynyeatkd in continuous ice, which are stable features tha
are common near the coast of Antarctica and off the Arctid lmasses where they are created by offshore winds c
upwelling or a combination of both. They also frequentlyurcim the near-continuous sea-ice of the Arctic Basic
when divergent natural stresses open up the ice canopy.

Close to the open ocean the ice-cover is composed of rdiatveall floes and is highly energetic, as waves
constantly fracture, break-up and redistribute it. Furih&o the region of ice-covered fluid the structure is more
stable, as the wave energy there has reduced sufficientlifoiw Hoes to exist at vast sizes and become neal
continuous. In this region and for greater penetrationsevemergy induces sea-ice to bend and flex rhythmically
with the subsequent oscillations at the fluid-ice interfaeimg described as flexural-gravity waves. When a flexural
gravity wave interacts with a polynya it will simultaneoysdisturb the free-surface it encloses and be scattered awz
from the polynya into the surrounding ice-covered fluid oegiMathematical modelling of scattering by polynyas
is particularly important, as they offer the best currerggioility for performing in-situ field tests to validate thrg.
Such data are notably lacking from the majority of reseandhis area.

At present, theoretical work on the scattering by ice floesregularities in ice sheets is largely focussed on
solving problems involving only two spatial-dimensiongedsSquire, 2007). Due to the existence of analytical
technigues such as Wiener-Hopf or residue calculus, a lptaifress can be made before resorting to numerice
methods. Other more numerical approaches, such as thase tr@snode-matching, are also very efficient and are
extremely easy to set up.

It is widely recognised that including the third spatiatrginsion is necessary to properly simulate scattering ir
regions of sea-ice. However, this generally makes an a@nalolution impossible to find and greatly increases the
difficulty involved in obtaining a numerical solution. Ndia work on scattering by three-dimensional geometries
includes Meylan (2002) for finite floes and Porter and Eva@T2 for finite cracks.

In this paper we consider the scattering of flexural-grawiives by a polynya of arbitrary shape. The solu-
tion method that we employ involves an approximation of teetigal motion by the single-mode that supports
propagating waves. Inserting this into a variational gpleceliminates the depth dependence and reduces the fu
three-dimensional boundary-value problem to a small systetwo-dimensional Helmholtz equations. For more
simple geometries this method has been shown to give higlramcand it can be easily extended to the full-linear
solution at the cost of increased numerics (see Bennetts 2087). The two-dimensional system that remains for
the polynya is reformulated via Green’s theorem into a sehefdimensional integro-differential equations that are

solved using a Galerkin scheme. o ) )
Preliminaries and approximation

Consider a three-dimensional geometry that is comprisadlafd domain of finite depth and that extends to infinity
in all horizontal directions, and an ice-sheet of consthinknessD that covers it. Let the Cartesian coordinates
x = (z,y) define the horizontal plane and lebe the vertical coordinate, which points upwards and hasri¢gn
set to coincide with the equilibrium surface of the fluid. Tibe covering exists at all points except for within

a finite regionx € 2, representing a polynya, in which the fluid surface is unldad&/e allow the shape of the
polynya to be arbitrary, although we suppose that it is eseldy the smooth contolir= I'(s) (=L < s < L),
with outward normal vecton = (cos O, sin ©) and tangential vector = (—sin©, cos ©) (0 = O(s)). If the bed
depth is denoted b¥ and the equilibrium submergence of the icedihen the fluid domain occupiese (—h,0)

for x € Q¢ andz € (—h,—d) for x ¢ €. Both h andd are assumed to be constant and wedset p;/(p, D),
wherep; = 922.5kgm~3 andp,, = 1025kg m~3 are the densities of the ice and water respectively, to ertbait
the ice is neutrally bouyant.

When the system is in motion the ice experiences small-sgadélations and, assuming harmonic time de-
pendence, the position of the underside of the sheet is giyen= —d + Re(We~“!). Herew is a prescribed
angular frequency antV’ = W (x) is the displacement functignwhich is currently unknown. We also make
the regular assumptions of linear motions so that the vgidigld of the fluid may be retrieved frorfvy, 9.) -



Re((g/iw)®(x, z)e '), where the unknown functio® = d(x, z) is thevelocity potentialnd the constanj =
9.81 ms~2 denotes acceleration due to gravity.

At this point we choose to partition the solution into thepedive ice-covered and ice-free fluid regions and to
restrict the vertical motion in each region to the single mtitht supports propagating waves therein. To do this w
approximate the velocity potential using

~

O(X, z) &~ ¢(X) cosh{k(z + h)} (x € Qy), (i)(x, z) ~ 1(X) cosh{kr(z + h)} (X € ), (1)

whereQ); = R?\Q, defines the region of ice-covered fluid. This leaves us to fiedtinctiony = ¢(x) in Qy and
¥ = 1(x) in Q, both of which exist only in the horizontal plane. It is pdssito extend the approximation (1) to
gain the full-linear solution to an arbitrary degree of aeoy by adding in the modes that support evanescent wave
and this work is currently in preparation.

In the above, the quantityis the propagating wavenumber within the polynya, and isudated as the positive,
real root of the free-surface dispersion relatioranh(kh) = o, wheres = w?/g. Similarly,  is the propagating
wavenumber when the fluid is ice-covered, which is the onbitp@ real root of the ice-covered dispersion relation

(1 —od+ Br*)ktanh(kH) = o, (2)

whereH = h — d is the fluid depth beneath the ice. In equation (2) the pragsedf the ice appear throughand
B = ED3/12(1 — v?)p,g, which is a scaled version of the flexural rigidity of the igeaddition,F = 5 x 10° Pa
andv = 0.3 are the Young’s modulus and the Poisson’s ratio respegtivel

The system of ice and fluid is forced by a plane incident wawa pinopagates towards the polynya from the
far-field |x| — oo at the oblique angl® < (0,27) with respect to ther-axis. Due to our choice to base our
approximation on the vertical mode that supports propagatiaves, the incident wave can be represented exactl
in Q; and we write it ash; cosh{x(z + h)} wherey; = elr(zcosi+ysind),

Combining the approximation (1) with a variational prifeipwhich is equivalent to the governing equations of
the full-linear problem, produces a set of equations to hisfgad by the functiong andq. Within the polyna this
dictates that, if we denot€ = (9., 9, ), the functiony satisfies the the second-order differential equation

V2 +k2p=0 (xeQ). (3a)

In the region of ice-covered fluid the variational princigliso creates an approximation of the displacemen
functionw ~ W indirectly through its association to the velocity potahtiWe write the equations to be satisfied
by 1) andw as the second-order system

VU + CK*CT' U =0 (x€ ), (3b)

where the vector of unknownsis = (v, w,w)” and we have introduced the notatién= 3V?w for convenience.
In equation (3b) the matriX = diag{x, i1, 2} contains the propagating wavenumber in the iceand values
1; that define (typically) oscillatory-evanescent wavestscatl by the polynya. These quantities are calculated a
the rootsu of the quartic equatiof3u* + 1 — od) + 26k sinh(2kH) (k% + p?)/a, = 0 that exist in the upper-half
plane, where the constamt = f__j cosh*{k(z + h)} dz. The matrixC contains the eigenvalues of the system and
is defined a€” = [c(k), c(j1), c(ua)] Wherec(u) = (1, usinh(uH) /o, —Bu®sinh(uH)/o)T.

The approximate velocity potentials are linked at the baupd by the jump conditions

p—Qb = p+¢7 (a—/p—)an(b = @ﬂh (4)

where the known values. = f__}fl cosh{k(z + h)} cosh{x(z + h)} dz anda_ = ffh cosh®{k(z + h)} dz, and
0, = n -V is the normal derivative. The ice must also experience ndingrmoment or shearing stress at the edge
of the polynya, and this is expressed as

W —(1—-v)B(0? +0'0,)w=0, 0+ (1—1)30,(0,0, —O'0)w =0, (5)

respectively, wher@, = s-V is the tangential derivative. In the far-fid] — oo the regular Sommerfeld radiations
condition must be applied to.



Integral equations

In order to solve the problem posed by the differential eignat(3a-b) we use Green’s theorem to reformulate
them into integral representations that may then be matohettheir common boundarly. Beginning with the
free-surface equations within the polynya, we may write

c6) = 5; [ {(OxHa(kx))6(X) ~ Hallr) Oxo(X))} 45 (x € ). (62)

in which H, denotes the Hankel function of the first kind of ordeand the quantity is defined as = 5 (x € I)
ande = 1 (x ¢ T'). Our integration parameters are defined through the soariable S, which corresponds ts,
so that the curv& = I'(.5), and the coordinate vectér= X(.S) € I' then corresponds to the Cartesian coordinate
X. The normal derivative of the source variablegisandr = |x — X| defines the distance between the field and
source variables.

Similarly, outside of the polynya, in which the velocity patial is coupled to the interfacial displacement we
derive the representation

W) = Us(x) ~ O /F ((OnHo(KT))C1T(X) — Ho(Kr)C- (O T (X))} S (x€ ), (6b)

where the diagonal matrix/(Kr) = diag{H(xr), Ho (1), Ho(por)} and the vectol; = C(v;,0,0)” contains
the contribution of the incident wave.

Now, lettingx — I"in the above integral representations and applying the joomglitions (4) gives rise to a
system of integral equations, which we write as

u(s) = /F{mo,o(s|5)u(5)—mo,l(s\S)v(S)}dS, u(s) = ul(s)—/F{MLO(S\S)U(S)—M1,1(5|S)V(S)} ds. (7)

These equations are to be solved for the vectors of functioas (u, [w|r, [@]r)” andv = (v, [0, w]r, [O,w]r)"
in whichu = p_[¢]r = pi[¢]r andv = (a_/p-)[0n¢]r = [0,¥]r, and wher€]-|r denotes that the included
quantity is evaluated on the contolir We also define the scalar Kernels,, andmg; as20yHy(k|s — S|)
and2(p® /a_)Hq(k|s — S|) respectively, and th& x 3 matrix KernelsM; , and M, ; as20yHo(K|s — S|) and
2PHy(K|s — S|) respectively, wheré = diag{p., 1, 1}. The system is forced by the vectoy = 2P[V/,]|r.

Application of the bending moment and shearing stress tiongi (5) allows the removal ab ando,,w from
(7) and in-doing-so reduces the unknowns present in theeaintegral system to the appropriate number to matct
the equations. An integro-differential system remainsecblved for the functions, v, w andd,,w, from which
we may then obtain the corresponding valuesioénd 0,,w. Once the values of the unknown functions have
been obtained on the bounddrytheir values throughout the domain in which they exist maydund using the
appropriate integral representation of (6).

In order to solve the system of equations that we have gextkoastthe boundarly we invoke a Galerkin scheme
with exponential basis functions. The unknowns are theeedapanded in terms of the orthogonal &get, : m €
R} wherey,, = xm(s) = (1/2L)e?"* and )\,, = mn/L, so thatu(s) = > umXm(s), v(s) = S uyXm(s),
w(s) = > wmXm(s) @ando,w(s) = > wmxm(s). We then truncate this representation to the dimengign+ 1
that achieves sufficient accuracy and solve for the corstantv,,, w,, andw,, (m = —M, ... M).

By taking the inner-product of the equations with each oftthsis functions,,, (m = —M, ..., M) in turn, we
derive the set of coupled equations

Up = Z {{(m0,0))mntim — ({(M01))mnVm}, W =1r, — Z {{M10))mnOm — ((M1.1)) mn Vi } (8)

m=—M m=—M

forn = —M,..., M, where((F)),.,, = [, [*, F(5[S)xm(S)X,(5) dS ds. Within these equations we have
the bending moment and shearing stress conditions embetdmeayh our definitions ofi,, and v,, which are
(U, Wy, —(1=0) B{INE W, =D (O )t @and(vy,, wy, —(1—1) {20, —>", (0"=i\,0) . nwi )T respectively,
where(f)mn = [%, F(S)xm(S)X, () dS.

Equation (8) represents a linear system @)V + 1) equations to be solved for the constamts v,,, w,, and
w,, that define the Galerkin approximations. For a smooth cwueh asl’, all of the inner-products needed to
form these equations incorporate only integrable funstiamd they may therefore be straightforwardly calculatec
by numerical means. Itis also possible to consider non-g§mmoves by using integration by-parts to eliminate the
singularities that are introduced. This extension will@gpin a forthcoming work.
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Figure 1: Part (a) shows the scattering cross-se@iagainst non-dimensional wavenumlagr for three ellipses.
Part (b) is a contour plot of the response of a polynya to aiémt wave of non-dimensional length0/h. The
elevation of the free-surface within a polynya (solid camg) and the diffracted wave in the surrounding ice-coverec

fluid (broken contours) are both plotted.

Numerical results
The above figures display two sets of numerical results prediwsing the theory outlined in this work. All spatial
parameters are non-dimensionalised with respect to thié dlegnd in both sets of results we fix/h = 0.05.

For the first set of results we consider the far-field respardigced by elliptical polynyas. Using the asymptotic
behaviour of Hankel functions for large arguments in exgites(6b), we may deduce that, in terms of the polar
coordinategr, #), the diffracted wave may be written @s— ¢; ~ (2/7rr)Y/2e%("="/) F(9) asr — oo. Here, the
function F is known as aiffracted far-field amplitudeand is readily calculated.

Figure 1(a) displays thecattering cross-sectioi = (1/27) ["_|F|* d¢ as a continuous function of the non-
dimensional wavenumbeth for three elliptical polynyas, where the incident wave @gates at an angle= 30°.
The ellipses are defined by/0.2h = (acos(sm/L), bsin(sw/L)), where the ratiaz/b is chosen to define the
eccentricity. The unmarked curve denotes the results farceda = b = 1), the dotted curve the ellipse with
(a,b) = (1,0.25) and the curve with crossés, b) = (0.25, 1).

For low frequencies, although the three curves are sinfikenetis a striking difference in their structure around
the pointkh ~ 0.6, at which the minimum appearing for the circular polynya pames to the inflections seen
for the elliptical polynyas. Away from this feature, as wiblle expected, the circular polynya generally produces
a diffracted wave of a larger amplitude. The values of thdtsdag cross-section grow with wavenumber until
rkh =~ 1.25, at which point they level out and experience the fine stmectamiliar in far-field responses at high
frequencies.

Figure 1(b) gives a contour plot showing the reponse of a rantsual shape and one that better represents
real polynya. This is defined by the curwg0.2h = (r cos(sm/2L),rsin(sw/2L)), where the radial coordinate is
r = cos®(sm/2L) + sin®(s7/2L), and it is shown by the thick line on the figure.

In the case depicted, the incident wave is of non-dimensiength 100/ and is set to unit amplitude. Within
the polynya, the solid contours denote the level surfaceseofvave elevation at = 0, with the broken contours
outside of the polynya, likewise the elevation of the sunaing fluid-ice interface induced by the diffracted wave
att = 0. Only 21 basis function&\/ = 10) were required to ensure convergence and energy conservatio
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