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 For a time harmonic refraction diffraction problem, Kim & Bai (2004) 

introduced a vector stream function: 

Ψ@x, y, zD ≡ ‡
−h@x,yD
z

u@x, y, z0D dz0
 

where η[x,y], u[x,y,z] and w[x,y,z] are the wave elevation, horizontal velocity and 

vertical velocity complex amplitudes, respectively.  

The velocity field and wave elevation are given by: 

u =
∂Ψ

∂z
, w = −∇⋅Ψ,

 

η =
1


ω
 ∇ ⋅ Ψ@x, y, 0D

 

They showed that Ψ[x,y,z] satisfies Laplace's Equation. Ψ clearly vanishes at 

 z = -h.  In two dimensions (Ψ=(ψ,0)) the formulation reduces to the well known 

scalar stream function formulation. 

The solution was approximated by representing Ψ as: 

Ψ@x, y, zD = Ψ0@x, yD f@h, zD , f@h, zD =
sinh@k@z+hDD

sinh@khD  

where Ψ0@x, yD  is the unknown to be solved. Through an Averaged Lagrangian 

they obtained a mild slope type equation, named the Complementary Mild Slope 

Equation (CMSE). & Bai (2004) studied this equation for one horizontal 

dimension (2D) and showed that it performed very well compared to similar 

models derived from the velocity potential formulation, such as the Modified MSE 

(Chamberlain and Porter, 1995) and the Extended MSE (Kirby 1986) which 

improved the original MSE (Berkhoff, 1972). The dominant role of resonant 



reflection of water waves in refraction and diffraction has become quite clear (Mei, 

1985; Agnon and Pelinovsky, 2001) 

 Agnon (1999) has used Operational Calculus to derive a pseudo-differential 

equation (the Augmented Mild Slope Equation, AMSE) in terms of the velocity 

potential. This equation was used to study the theoretical accuracy of the Mild 

Slope Equation and its extensions, by deriving them as approximations to the 

AMSE. Here we derive an Augmented CMSE, and show that the CMSE is a high 

order approximation to the Augmented CMSE, which explains its excellent 

performance. We also extend the application of the CMSE to three dimensional 

problems and obtain a Nonlinear CMSE.  

 Following Agnon (1999) and Rayleigh (1876) we expand the stream function 

Ψ in a series about Ψ0, using the Laplace equation (and the combined free surface 

boundary condition) to replace even ordered vertical derivatives by corresponding 

powers of the horizontal Laplace Operator, we write: 

 where
Ψ@zD = ExpBz d

dz
F Ψ0 = F@z, ∇D Ψ0

 

∇ =
i
k
jj ∂

∂x
,

∂

∂ y

y
{
zz

 

 and F is a differential operator of infinite order 

F@z, ∇D ≡ JCos@z ∇D −
1

σ
 Sin@z∇D ∇N σ ≡ kTanh@hkD

 

According to its definition,  0Ψ = 0 at z = -h, that is  

F[-h, ∇]Ψ0 =0.  

By adding F[-h0, ∇]Ψ0−F[-h, ∇]Ψ0        on both sides of the equation we get: 

F@−h0, ∇D Ψ0 = HF@−h0, ∇D −F@−h, ∇DL Ψ0                                              (*) 

We now define: 

G@h0, ∇D ≡
µ

F@−h0, ∇D =
µ

Cos@h0 ∇D + 1

σ
 Sin@h0∇D ∇

 

µ ≡ ∇
2
+k0

2
  is a small parameter standing for the detuning from resonance.  



Operation of G on both sides of  0 (*) yields: 

µ Ψ0 = G HF0− FL Ψ0                                                                                    (**) 

(**) is the Augmented CMSE.   We expand F, G in µ: 

F@h, ∇D = F@h, k0D − F
′@h, k0D µ , 

F0@h0, ∇D = F0− F0
′
 µ         where  F0  = F(h=h0)    and  

G@h0, κD =
µ

F@h0, ∇D = −
1

F0
′
+
1

2
 
F0
′′

HF0′L2  µ  

Expansion of  0 to Ο(µ) gives: 

µ Ψ0 = GHHF0− FL − HF0′ − F′L µL Ψ0  

which leads to: 

µ Ψ0 = −
1

F0
′
 HF0 −FL Ψ0+

1

2
 
F0
′′

HF0′L2 H∇2+k02L HF0 −FL Ψ0 +
1

F0
′
 HF0′  µ −F

′
 µL Ψ0+ O Hµ2L

 

We now note that: 

HF0− FL Ψ0 = HF0− FL ∇2Ψ0 = HF0′ − F′L µ Ψ0 = 0  

∇F0Ψ0 = ∇
2
F0Ψ0 = 0  

so we get: 

∇
2
F0 − ∇

2
F = −

∂F@h, kD
∂h

 ∇
2
h−

∂2F@h, kD
∂h2

 H∇hL2
 

Finally we obtain: 

µ Ψ0 = a ∇ h ∇Ψ0 + b ∇2h Ψ0 + c H∇hL2 Ψ0                                (***) 

a = −
F0
′′

HF0′L2  
∂F

∂h
, b = −

1

2
 

F0
′′

HF0′L2  
∂F

∂h
, c = −

1

2
 

F0
′′

HF0′L2  
∂2F@h, kD

∂h2  

This has the same form as the CMSE. Comparison of the coefficients of (***) with 

the coefficients of the CMSE shows that the first two coefficients a, b are identical 

to the corresponding coefficients. These two coefficients are associated with Class 

I Bragg resonance, as defined by Liu & Yue (1998). Thus, we see that the CMSE is 

accurate to order µδ, where δ = h-h0, while the Modified MSE has an error of 

order µδ. This explains the excellent performance of the CMSE. 



 c, the last coefficient in (***) and the corresponding coefficient in the CMSE 

are related to the square of the bottom slope. They are associated with Class II 

Bragg resonance, and as such neither of them is accurate. 

 The application of the CMSE to three dimensional problems and the 

Nonlinear CMSE will also be discussed.  
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