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In prolongation of our previous investigations on capillary-gravity surface
waves in spatial layers (see [1-3] and bibliography to them) the problem about
potential flows of incompressible heavy capillary floating fluid in a layer of
infinite depth with free upper boundary is considered. Periodical with periods
2π
a

= a1 and 2π
b

= b1 potential flows of a heavy capillary floating deep fluid
in spatial layer with free upper boundary close to horizontal plane z = 0
are bifurcating from the basis flow with constant velocity V in Ox-direction.
Velocity potential has form ϕ(x, y, z) = V x + Φ(x, y, z). In dimensionless
variables this problem is described by the system of differential equations
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with decreasing conditions of the function Φ and its first derivatives on infin-
ity. The second equality in (1)–(3) is a kinematic interfacial condition, and
the third one describes the force balance (the Bernoulli integral), F 2 = gL

V 2

(the Froud number), γ = σ
ρgL2 (the Bond number), k = ρ0

ρL
.

The system (1)–(3) is invariant to the 2-dimensional shifts group Lβg(x, y) =
g(x + β1, y + β2) and the reflections

S1 : x → −x, Φ(x, y, z) → −Φ(−x, y, z), f(x, y) → f(−x, y),
S2 : y → −y, Φ(x, y, z) → Φ(x,−y, z), f(x, y) → f(x,−y)

The linearized system can be obtained by straightening free upper bound-
ary — change of variables ζ = z − f(x, y), Φ(x, y, ζ + f(x, y)) = u(x, y, ζ)
and setting F 2 = F 2

0 + ε

∆u = w(0)(u, f),−∞ < ζ < 0; (4)



uζ − fx = w(1)(u, f), ζ = 0; (5)

ux + kuxζ + F 2
0 − γF 2

0 ∆f = w(2)(u, f, ε), ζ = 0; (6)

k < γF 2
0 , (the ellipticity condition of the Bernoulli integral (6)) (7)

where w(j), j = 0, 1, 2 are small nonlinearities. The system (4)–(6) can
be written as the nonlinear functional equation BX = R(X, ε), R(0, ε) ≡
0, Rx(0, 0) = 0, where X = {u, f} is the bifurcation point problem with
Fredholm [4] operator B = Bmn : C2+α(Π0×(−∞, 0])+C2+α(Π0) → Cα(Π0×
(−∞, 0]) + Cα(Π0) + Cα(Π0), 0 < α < 1, Π0 is the periodicity rectangle in
(x, y) plane.

Presenting the function f(x, y) by its Fourier series∑
m,n

(amn cos max cos nby + bmn cos max sin nby+

+cmn sin max cos nby + dmn sin max sin nby),

in the homogeneous equation BX = 0 we find
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(m, n are positive integers, n may be equal zero), at the satisfaction of which
for some pairs (mj, nj), j = 1, 2, . . . , κ the zero-subspace N(B) of the lin-
earized operator B has form

ϕ̂1j = {−v1j(ζ) sin mjax cos njby, v2j cos mjax cos njby},
ϕ̂2j = {−v1j(ζ) sin mjax sin njby, v2j cos mjax sin njby},
ϕ̂3j = {v1j(ζ) cos mjax cos njby, v2j sin mjax cos njby},
ϕ̂4j = {v1j(ζ) cos mjax sin njby, v2j sin mjax sin njby},

where v1j(ζ) =
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√
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.

Solving the arising branching equations (BEqs) at the different n =
dim N(B), we find its solutions (expressed by the coefficients of corresponding
BEqs). We consider now the 4-dimensional branching. The orbital stability
of the branching solutions (1)-(3) is determined [5] by the stability of sta-
tionary solutions of the equation dη

dt
= t(η, ε), where t(η, ε) is the left part of



branching system, ε = F 2 − F 2
mn. The stability of these ones is determined

by the signs of eigenvalues of Jacobian matrix J =
[

∂ti
∂ηj

]
on these solutions.

The action of operator Lβ1β2 on the arbitrary element N(Bmn) is equiva-
lent to the transformation of its coordinates with the aid of matrix Ag (here
f1(β1, β2) = cos maβ1 cos nbβ2, f2(β1, β2) = cos maβ1 sin nbβ2, f3(β1, β2) =
sin maβ1 cos nbβ2, f4(β1, β2) = sin maβ1 sin nbβ2)
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−f3(β1, β2) −f4(β1, β2) f1(β1, β2) f2(β1, β2)
f4(β1, β2) −f3(β1, β2) −f2(β1, β2) f1(β1, β2)

 .

By using the matrix Ag the family of solutions is determined η̃ = Agη̃0(ε) =
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+ o(|ε|1/2), where η̃0(ε) is the solution of reduced BEq
(β1 = β2 = 0).

tη(η̃0(ε), ε) [Λiη̃0(ε)] = 0, i = 1, 2 (9)

where Λi are infinitesimal operators of Lie algebra in Ξ4
ϕ.
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The relations (9) are fulfilled and the stability of branching equationsAβ η̃0(ε)
is determined by the signs of the main terms relative to ε of the eigenvalues of
Jacobian matrix J at this solution, which have form (B̃ = B+C, C̃ = 3B−C)
ν1,2 = 0, ν3 = −2Aε, ν4 = 2Aε

B̃+C̃
(C̃ − B̃).

Theorem 1. In order to the family of solutions be stable it is necessary
and sufficient that the condition signε = signB = sign(B̃ + C̃) = −1 is
fulfilled {

B̃ + C̃ < 0

C̃ − B̃ > 0
<=> 0 <

|C̃|
|B̃|

< 1 (10)

Let us consider the second group of solutions. Here ν1,2 = −2ABε
B+C

, ν3 =

− 2Aε
B+C

(C −B), ν4 = 0.
Theorem 2. In order to the family of solutions be stable it is necessary

and sufficient that the condition signε = sign(B + C) = signB̃ = −1 is
fulfilled.



0 <
|B̃|
|C̃|

< 1 (11)

Remark 1. At the satisfaction of inequality (10) (resp. (11)), the family
(1)-(3) will be stable relative to perturbations of the same periodicity lattices
class, and the instability relative to perturbations of the same periodicity
class means the instability in general. Remark 2. The results for the
problem, considered in [6], are similar to the ones obtained for the case of
deep fluid (the same conditions for stability, but different expressions for
coefficients).

n=dim N(B)=6. Here the eigenvalues of Jacobian matrix have form

ν1,2,3,4 = 0, ν5,6 = Cε±
√

C2ε2+4ACε2

2
. Since A, C < 0, one of them is posi-

tive, so we have the instability in this case.
n=dim N(B)=4+2+2. For the first solution ν1,2,3,4,5 = 0, ν6, ν7, ν8 are the

roots of cubic equation (one of them is negative and the others are complex-
conjucate). At the γ → 0 we obtain the conditions under which the solution
will be stable: signBD = −1, EG

B2 > 1. For the second solution ν1,2,3,4,5,6 = 0,

ν7,8 =
(F+2C)ε±

√
(F+2C)2ε2−8CF (1+ε2)

2
. Since C, F < 0, for any ε > 0 ν7,8 < 0,

i.e. the solution is stable. And for the third one: ν1,2,3,4,5,6 = 0, ν7,8 =
Fε±

√
F 2ε2+8CFε2

2
. Since C, F < 0, one of ν7,8 is positive, then the solution is

unstable.
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