
VERIFICATION OF THE METHOD OF FLAT CROSS-SECTIONSFOR THE CASE OF JET IMPACT ONTO ELASTIC PLATET.I. Khabakhpasheva, Lavrentyev Institute of Hydrodynami
s, pr.Lavrentyeva 15, Novosibirsk,630090, Russia, e-mail: tana�hydro.ns
.ruThe paper is 
on
erned with 3D 
ompressible liquid jet impa
t onto an elasti
 plate (Fig.1). Theresponse of the plate is governed by the linear dynami
 equation. The 
oupling between the �uid�ow and the plate de�e
tion is taken into a

ount through the dynami
 and kinemati
 
onditionsimposed on the wetted part of the plate. Solution of this problem was 
onstru
ted by Korobkin,Khabakhpasheva & Wu [1,2℄ for a two dimensional problem, an axisymmetri
al problem and a threedimensional problem of a re
tangular jet impa
t onto a re
tangular plate. Modal analysis was usedfor both �uid �ow and stru
tural response. However, the problem of impa
t by a jet of arbitrary
ross se
tion is still open.In this study the hydroelasti
 problem of elongated jet impa
t onto re
tangular elasti
 plateis solved approximately by using strips theory for hydrodynami
 analysis. The plate response isevaluated in the same way as in [1,2℄. This 
ombined approa
h for solving 3D problems of hydroelasti-
ity was proposed by Dr. S. Maleni
a (private 
ommuni
ation at last WWWFB).
The present analysis is dedi
ated to veri�
ation of the method of 2D 
ross se
tions (stripsmethod) and appli
ation of this method for the 
ase of impa
t of the jet with arbitrary 
ross se
tiononto re
tangular elasti
 plate. To verify appli
ability of this method we 
an solve 3D problem of are
tangular jet impa
t onto a re
tangular plate twi
e: �rst the problem solved as a full 3D problem(see [1,2℄) and, se
ond, by the method of 2D 
ross se
tions. Namely, we divide the part of the platewith the 
onta
t region into thin stripes and determine the hydrodynami
 pressure at ea
h stripevia solution of 2D problem, while vibration of the plate is determined as solution of 3D problem(Fig.2). For illustration of appli
ability of this approa
h ellipti
al and diamond shape of the jet 
rossse
tion are 
onsidered.Formulation of the problemThe 
oupled problem of jet-stru
ture impa
t is 
onsidered. The stru
ture is a single simplysupported plate of uniform thi
kness. The jet with 
onstant 
ross se
tion and a �at head hits theplate from below in the normal dire
tion. Gravity and surfa
e tension e�e
ts are negle
ted and theliquid is assumed ideal. The jet speed V is assumed to be mu
h smaller than the speed of the sound

c0. The disturbed �ow due to the impa
t is then des
ribed within the linear a
ousti
 approximationthrough the velo
ity potential theory. The initial stage of the impa
t is 
onsidered here only. Overthis short period of time, the deformation of the jet surfa
e is negle
ted and the boundary 
onditionsare linearized.The problem is 
onsidered in non-dimensional variables, where the 
hara
teristi
 dimension Rof the jet 
ross se
tion D is the length s
ale, jet speed V is the velo
ity s
ale, the "water hammer"pressure ρc0V is the pressure s
ale, ρ is the liquid density, the produ
t V R is the s
ale of the velo
itypotential of the �ow in the jet region (x, y) ∈ D, z < 0 and RV/c0 is the plate de�e
tion s
ale,
Oxyz is the Cartesian 
oordinate system with the plate being in the plane z = 0. The ratio R/c0 istaken as the time s
ale.The total velo
ity potential 
an be written as z−φ(x, y, z, t), where φ is the disturbed potentialwhi
h satis�es the following equations and boundary 
onditions



ϕtt = ϕxx + ϕyy + ϕzz ((x, y) ∈ D, z < 0), (1)

ϕ = 0 ((x, y) ∈ ∂D, z < 0), ϕ → 0 ((x, y) ∈ D, z → −∞), (2)

ϕz = 1 − wt(x, y, t) ((x, y) ∈ D, z = 0), (3)

ϕ = ϕt = 0 (t = 0), (4)where w(x, y, t) is the plate de�e
tion, p(x, y, z, t) = ϕt is the hydrodynami
 pressure.The plate de�e
tion is governed by the following equation
αwtt + β∆2w = p(x, y, 0, t) ((x, y) ∈ S, t > 0), (5)

w = 0, ∆w = 0 (x, y) ∈ ∂S, (6)

w = wt = 0 (t = 0), (7)where ∆ is the Lapla
e operator on x and y variable,
α =

m

ρR
, β =

Dp

ρc2
0R

3
,

m = ρph is the plate mass per unit area, ρp is the density of the plate material and h is the platethi
kness, Dp = Eh3

12(1−ν2)
is the plate sti�ness, E is the Young modulus, ν is the Poisson ratioand S is the surfa
e area. It 
an seen that the problem under 
onsideration is a 
oupled one ofhydroelasti
ity. The liquid �ow and the plate de�e
tion have to be determined simultaneously.3D and 2D 
ross se
tions methods of solutionBy using normal mode method and Lapla
e transform, the problem 
an be redu
ed to a systemof ordinary di�erential and integral equations with respe
t to time for prin
ipal 
oordinates ofvelo
ity potential and the plate de�e
tion. The system 
an be trun
ated and solved numeri
allyby the fourth order Runge-Kutta method, the integral terms 
an be 
omputed by trapezoidal rule[1,2℄.Modal analysis was used in [1,2℄ for both �uid �ow and stru
tural de�e
tion. For the 
ase ofsimple geometry (two-dimensional jet impa
t onto a beam, three-dimensional re
tangular jet impa
tonto re
tangular plate and axisymmetri
al jet impa
t onto 
ir
ular plate) the elements of linearsystem for prin
ipal 
oordinates were found by analyti
al formulae and are presented in [2℄. Butmodal approa
h is not useful for the 
ase of arbitrary geometry be
ause it is very di�
ult to de�neeigenmodes both for the plate and for the jet 
ross-se
tion. To solve the problem of the impa
t byjet with arbitrary elongated 
ross-se
tion the following idea looks appli
able: we 
an divide the partof the plate with the 
onta
t region into a number of thin strips and for a strip with number n we
an determine hydrodynami
 pressure distribution Pn(x, t) via solution of a 2D problem. After thatwe �nd the total pressure as the sum of the Pn(x, t), a
ting on 
orresponding strips, and determinethe plate vibration under this pressure as a solution of full 3D problem. This is a modi�
ation ofthe method of 2D 
ross se
tions whi
h is well known in the ship hydrodynami
s.Veri�
ation of 2D 
ross se
tions methodTo verify a

ura
y of the 2D 
ross se
tions method we solve 3D problem for re
tangular plateand re
tangular jet 
ross se
tion twi
e: as a full 3D problem (see [1,2℄), and with the fragmentationinto the number of thin strips. For ea
h strip we 
an use analyti
al formulae for the hydrodynami
smodes and, 
onsequently, for the 
oe�
ients of the system for 2D hydrodynami
 problem (see [2℄).It is interesting to note, that for the 
ase, when impa
t geometry (pla
e of the jet 
enter and jetwidth) in every strip is the same as for the other strips, we 
an �nd analyti
al formulae for the totalpressure, whi
h is independent of the number of the strips, but di�erent from formulae for full 3Dproblem.Pressure investigation for the jet - plate impa
t (see [2℄) shows, that at the initial time instantpressure has dis
ontinuity at the edge of a 
onta
t region, but as a result of liquid 
ompressibilityand propagation of rarefa
tion waves from the jet surfa
e into the 
onta
t region (see [6℄ for details),at ea
h subsequent time instant the pressure tends linearly to zero in the vi
inity of the edge of the
onta
t region. In nondimensional variables, rarefa
tion waves propagated with unite velo
ity.



But if we use the 2D 
ross se
tions methoddire
tly, without modi�
ation, we do not 
onsi-dere the rarefa
tion wave moving from the jetfree surfa
e on y-dire
tion (strips are normal to
y-dire
tion). To take into a

ount these waveswe introdu
e de
reasing 
oe�
ients ki for thehydrodynami
 pressure on the outer strips whi
hare linearly proportional to time and 
hange fromzero to unite a

ording to velo
ity of the rarefa
-tion waves propagation (see sket
h on Fig.3). We use these 
oe�
ients during the �rst unite of thenondimensional time, until the value of the pressure be
omes small (see [2℄).All results presented in this paper are obtained for a steel plate with E = 21 · 1010 N/m2,
ρp = 7875 kg/m3, ν = 0.3. The water jet parameters are c0 = 1500 m/s, ρ = 1000 kg/m3. Thedimensions of the plate are 1 m×1 m, the plate thi
kness is 2 cm. The impa
t velo
ity is V = 10 m/s.The dimensionless time step is ∆t = 0.04, whi
h 
orresponds to 5.3 · 10−6 s. Cal
ulations for the 3Dmodel were performed with 100 modes for the plate and 100 modes for the jet. In 2D 
ross se
tionapproa
h the number of the 2D hydrodynami
s modes was 10, the number of the 3D elasti
 modeswas 100 and the number of strips was 29.

Figs.4-5 present the 
omparison of the time-histories of the plate de�e
tions and bending momentsfor the 3D (solid lines) and 2D 
ross se
tions approa
h (dashed lines). The unit of time is themi
rose
ond. The 
entre of the jet 
oin
ides with the 
entre of the plate. Fig.4 
orresponds to there
tangular jet 
ross se
tion with aj × bj = 10 cm × 80 cm, and Fig.5 is for the 
ase aj × bj =
10 cm × 30 cm. Curves 1 on the plots for de�e
tion and plots for the bending moments are for the
entre of the plate (x = y = 0.5 m). Curves 2 and 3 on the plots are for the points on the platewith x = 0.5 m and y = 0.5 ± bj/2 or y = 0.5 ± bj/4. One 
an see, that for more elongated jet
ross se
tions (Fig. 4) results of both approa
hes for de�e
tions are in very good agreement, but 2D
ross se
tion method underestimates the values of the bending moments. For the se
ond 
ase (Fig.5) both de�e
tion and bending moments are in qualitative agreement only. We 
an 
on
lude, thatelongation of the jet 
ross se
tion is not su�
ient for appli
ation of the strips method.Numeri
al simulations show, that 2D 
ross se
tion method for the jet plate impa
t is useful forthe jet 
ross se
tion with elongation bj/aj > 4 and arbitrary lo
ation of the jet 
enter. We 
anpredi
t well the evolution of the plate de�e
tions, but we need to take into a

ount, that for thebending moments we underestimate the maximum values about on 15-20%.



Results for ellipti
al and diamond shape of the jet 
ross se
tionFigs.7-8 present the 
omparison of the plate de�e
tions and bending moments for the di�erentshape of the jet 
ross se
tion with the same area. Shapes and sizes of the jet 
ross se
tion, 
onsideredhere, are presented at the Fig.6.The 
entre of the jet 
oin
ides with the 
entre of the plate for the 
ases on Fig.7 and lo
atedat point (30 cm, 40 cm) for the Fig.8. Solid, dashed and dotted lines 
orrespond to the re
tangular(3D approa
h), ellipti
al and diamond shapes of the jet 
ross se
tions respe
tively. One 
an see,that the 
urves at ea
h plot are quit 
lose to ea
h other. This fa
t indi
ates that, the vibration ofthe plate under impa
t of the jet of arbitrary 
ross se
tion are very 
lose to vibration of the plateunder impa
t of re
tangular jet with equal area, elongation and lo
ation.

Con
lusionsThe following 
on
lusions are made in the 
ontext of present study:
• 2D 
ross se
tion method for the jet plate impa
t is useful for the jet 
ross se
tion with elongation
bj/aj > 4 and arbitrary lo
ation of the jet 
enter. It is possible to predi
t the evolution of the platede�e
tions, but the maximum values of the bending moments underestimated by 15-20%.
• To predi
t vibration of the plate under impa
t of jet with arbitrary 
ross se
tion we 
an use theresults for re
tangular shape of the jet with equal area, elongation and lo
ation.A
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