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     Analysis of a planing hull is normally done by neglecting gravity. However, gravity matters. 
The gravity effects on a prismatic hull in steady motions have been studied by Sun and Faltinsen 
(2007) by using a 2D+t theory and a two-dimensional Boundary Element Method. In this paper, 
we will generalize this approach to study the loadings on a planing hull in unsteady motions at a 
moderate planing speed.
     The forward speed of the planing hull is U. Forced oscillations in heave or pitch are given to 
the vessel. We assume no incident waves. An analysis similar as in Maruo and Song (1994) is 
followed. The space-fixed coordinates xyz and the body-fixed coordinates XYZ are defined in 
Fig. 1. The xy plane is in the calm water surface and the z-axis is pointing upwards. The planing 
hull is moving in the negative x-direction. The origin of XYZ is fixed at the centre of gravity 
(COG) of the hull. The X-axis is pointing to the stern and the Y-axis is towards the starboard. 
The instantaneous trim angle  is defined positive when the bow is up. The position of the COG 
in the space-fixed coordinates is (xg, 0, zg). The body-fixed coordinates can be related to the 
space-fixed coordinates by X = (x–xg)cos  – (z–zg)sin  ; Y = y; Z = (x–xg)sin +(z–zg)cos .
     A velocity potential (x,y,z,t) is introduced to describe the water flow around the vessel. The 
velocity potential satisfies three-dimensional Laplace equation. Fully nonlinear free surface 
conditions and exact body boundary conditions are satisfied in three dimensions. Then we 
introduce the slenderness ratio as  = d/L, where d is the draft and L is the length of the hull. By 
using slender body assumption, we have / x~O( ), /  ~O(1), / z~O(1). Further, we have / X
~O( ) , / Y~O(1), / Z ~O(1) and we assume that the trim angle is small. Neglecting the terms 
with order O( 2) in the governing equation and the boundary conditions, one can obtain the 2D 
Laplace equation and boundary conditions in a cross- plane given by  
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where g is the acceleration of gravity and the normal vector N=(NX, NZ) is the 2D normal vector 
in the cross-plane. For a prismatic hull, we have NX=0. The unsteady motions are described by 
the heave 3 = 3asin( t) or the pitch 5 = 5asin( t) for t 0 . The heave is positive when it is 
upward and the pitch is positive when the bow is up. The dot above 3, 5 means time derivative. 
In addition, we have far-field conditions.
     The Boundary Element Method described in Sun and Faltinsen (2007) is used to solve the 2D 
problem described by Eqs. (1)-(4) . In the BEM, the thin jet along the body surface is cut off. 
When the water flow separates from the knuckles of the V-shaped section, a flow separation 
model similar as in Zhao et al. (1996) is applied. Thin sprays will rise up along both sides of the 
section after separation and turn over to hit the water surface underneath. To avoid wave breaking, 
the overturning thin spray is cut away before it hits the underlying water. The numerical schemes 
to cut the thin jet and to cut the thin spray are described in detail in Sun and Faltinsen (2007). 
However, numerical challenges are in particular found for the present unsteady problems.       
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Fig. 1 Coordinate systems and definitions.          Fig. 2 Numerical scheme in the 2D+t theory. 

     Initially the hull is planing steadily on the free surface, so the initial conditions for the water 
flow can be obtained from the steady calculations in Sun and Faltinsen(2007). Then a forced 
unsteady oscillation in heave or pitch is given to the hull. The time histories of the total vertical 
force and the pitch moment around the COG of the hull can be calculated. The vertical force is 
positive in positive z-direction and the pitch moment is positive when it makes the bow go up and 
the stern go down.

The numerical calculations can be performed as follows. At first, a number of equally spaced 
vertical Earth-fixed planes intersecting the hull are introduced. The number of the planes is NX = 
6 in Fig. 2. At each cross-plane, the free surface elevation and the velocity potential on the free 
surface are known from the steady calculations in advance. With these free surface conditions 
and the body boundary condition given by Eq. (2), the boundary value problem can be solved in 
the 2D cross-plane by the BEM. Then the pressure on the hull can be calculated by p pa = 

/ t  [( / y)2+( / z)2] gz where is the water density and pa is the atmospheric 
pressure. Integrating the pressure in this cross-section properly will result in a sectional vertical 
force. When the sectional forces in all the NX planes are known, we have an approximation of 
the sectional force distribution along the hull. From this force distribution, we can do integrations 
to obtain the total vertical force and the pitch moment. In the next time step, the free surface 
elevation and the velocity potential on the free surface at each plane are updated by using the free 
surface conditions in Eqs. (3) and (4) by the fourth-order Runge-Kutta method. We can continue 
the calculation until the hull advances forward for a distance equal to the interval of the cross-
planes. Then we discard the plane No.1 and introduce a new plane No.7, so there are always 
NX=6 planes used in the calculations. The calculation starts in this new plane by using the initial 
conditions given from Wagner’s approximation. As the hull moves further, we will continuously 
discard the plane after the hull and introduce a new plane in front of the hull. In this way, the 
calculations can be continued. 
     In front of the foremost plane, say No. 6 in Figure 2, there is a small part of hull that has been 
neglected in the procedure described above. Instead, the forces on this part will be calculated by a 
simplified method by neglecting the gravity effects. Actually, around this forward part of the hull 
the water moves so fast that the acceleration of the water flow is much larger than the 
acceleration of gravity. This simplified method is similar as what is used in Lin et al.(1995). The 
sectional vertical force is approximated by f(x,t) = d(AV)/dt = VdA/dt+AdV/dt, where A(x,t) is 
the 2D heave added mass at infinite frequency and V(x,t) is the vertical water entry speed of the 
section. From the 2D body boundary condition in (5), V(x,t) can be written as 3 5U X .
The added mass is approximated by A(x,t) = Cm ( b)2 with b(x,t) as the local beam measured 
from the calm water surface and Cm and  are correction factors. By using the similarity solution 
in Zhao and Faltinsen (1993), these two factors for deadrise angle =20º are given by Cm=0.787
and =1.5.
     The numerical calculations are performed for the unsteady tests in Troesch (1992) with the 
following parameters. The beam of the prismatic hull is B= 0.318m. Deadrise angle is =20º. The 
trim angle in steady conditions is =4.0º and the mean wetted length-beam ratio is w = 3.0. The 
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location of the COG is described by lcg/B = 1.47 and vcg/B = 0.65, where lcg is the distance 
measured from the stern along the keel to the COG and vcg is the normal distance from the COG 
to the keel line. The beam Froude number is FnB=U/(gB)1/2=2.5 for the calculated cases. The 
amplitudes of the heave motion and the pitch motion are respectively 3a =0.036B and 5a=0.43º.
Five frequencies for (B/g)1/2 = 0.85, 1.13, 1.4, 1.7, 1.95 are used in the calculations. 
     The number of the cross-planes intersecting the hull is chosen as NX=11. The period of 
adding a new plane can be obtained by dividing the interval of the space-fixed planes by the 
speed of the hull, which is about 0.02s. So there are periodic small disturbances of this period in 
the time histories of the force and moment. However, the amplitudes of the noise are much 
smaller than the amplitudes of the overall oscillations and the period of the noise is much shorter 
than the investigated heave or pitch periods. Further, increasing the number of NX will result in 
more smooth time varying curves. However, the overall oscillations are not obviously affected.
     From a time history of the vertical force or the pitch moment, we can do a Fourier analysis to 
find out the amplitudes of different harmonics. A time history f(t) can be expanded as 
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The amplitudes for the first harmonic a1 and b1 are used to estimate the added mass coefficient 
and the damping coefficient by Aij = [(a1)ij Cij ja]/( 2

ja) and Bij=(b1)ij/( ja) where the 
subscripts ij in (a1)ij and (b1)ij means that the amplitudes a1 and b1 are taken from the vertical 
force (i= 3) or the pitch moment (i=5) when the forced heave (j=3) or pitch (j=5) is given to the 
hull. Because the definition of the positive direction of the pitch motion and pitch moment in the 
experiments is different from the present definition, the signs of the experimental A35, A53, B35
and B53 are changed in the comparisons between the experiments and the present calculations. 
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Fig. 3 Added mass and damping coefficients changing with frequency. 
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Fig.4 Added mass and damping coefficients after a three-dimensional correction. 
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Fig. 3 Added mass and damping coefficients changing with frequency. 
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Fig.4 Added mass and damping coefficients after a three-dimensional correction. 
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     The restoring force coefficients Cij are nonlinear, Froude number and time-dependent. 
However, for simplicity Troesch (1992) used a linear modeling, in which Cij were determined at 

j=0 from the experimental data in steady cases when a constant heave or pitch was given to the 
hull. To compare with the experiments, we follow the same way to decide Cij. The calculated 
added mass and damping coefficients for the five different frequencies are compared with the 
experimental results in Fig.3. EXP. means experiments; NUM. means the present calculations. 
     All the damping coefficients and added mass coefficients except A35 seem to be independent 
of the frequency. There is large discrepancy between the experiments and calculations for A35,
however, the agreement looks better for higher frequencies. From the study of the unified theory 
and the traditional strip theory (Newman and Sclavounos, 1981), it can be shown that three-
dimensional effects matter more for lower frequencies in the strip theory. This can also be true 
for the present method, because we have neglected some three-dimensionalities. It was shown in 
Sun and Faltinsen (2007) that the 3D effect at the transom stern will apparently affects the force 
and the moment on the hull. After a certain correction of this 3D effect, better results were 
obtained. The same correction for the 3D effects at the transom is applied here. The results after 
the 3D correction are shown in Fig. 4. Then the agreement in damping coefficients is improved 
and they are still almost frequency independent. The agreement for A35 looks better. The other 
three coefficients become slightly frequency dependent. Experiments also show slightly 
frequency dependent added masses. However, there is better agreement at higher frequencies and 
larger discrepancy at lower frequencies. We have to notice another effect which can influence the 
comparison. It is the influence of the estimated restoring force coefficients Cij. Those coefficients 
used in Troesch (1992) are not directly given in his paper. Errors in Cij will cause larger 
discrepancy in Aij for lower frequencies because the added masses are calculated from Aij =
[(a1)ij Cij ja]/( 2

ja). The error is proportional to 1/ 2. Further, 3D effects near the chine wetted 
position, where the chine line starts to get wetted, cause overestimated force near this position, as 
shown in Sun and Faltinsen (2007). This effect will also cause errors in the results of the added 
mass and damping coefficients. Again, the effect is supposed to be more prominent for lower 
frequency cases. 
     Our future plan is to study the effect of nonlinearities which are particularly important for 
planing vessels in waves. 
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