Nearfield and farfield boundary-integral representations of free-surface flows
Francis Noblesse ${ }^{1}$ (francis.noblesse@navy.mil), Chi Yang ${ }^{2,3}$, Rommel Espinosa ${ }^{2}$
${ }^{1}$ NSWCCD, 9500 MacArthur Blvd, West Bethesda, MD 20817, USA
${ }^{2}$ College of Science, George Mason University, Fairfax, VA 22030, USA (cyang@gmu.edu)
${ }^{3}$ Shanghai Jiao Tong University, Shanghai, China

1. Green's classical potential representation

Consider a finite 3D region \mathcal{D} bounded by a closed surface Σ. The divergence theorem applied to the function $\phi \nabla G-G \nabla \phi$ yields the classical Green identity

$$
\begin{equation*}
\int_{\mathcal{D}} d \mathcal{V}\left(\phi \nabla^{2} G-G \nabla^{2} \phi\right)=\int_{\Sigma} d \mathcal{A}(G \mathbf{n} \cdot \nabla \phi-\phi \mathbf{n} \cdot \nabla G) \tag{1}
\end{equation*}
$$

where $d \mathcal{V}$ and $d \mathcal{A}$ stand for differential elements of volume or area of the region \mathcal{D} or the boundary surface Σ, and \mathbf{n} is a unit vector that is normal to Σ and points inside \mathcal{D}. For a function $\phi \equiv \phi(\mathbf{x})$ that satisfies the Laplace equation $\nabla^{2} \phi=0$ within \mathcal{D}, and a Green function $G \equiv G(\mathbf{x} ; \widetilde{\mathbf{x}})$ that satisfies the Poisson equation $\nabla^{2} G=\delta(x-\widetilde{x}) \delta(y-\widetilde{y}) \delta(z-\widetilde{z})$ in \mathcal{D}, or in a larger region that includes \mathcal{D}, (1) yields Green's classical boundary-integral representation

$$
\begin{gather*}
\widetilde{C} \widetilde{\phi}=\int_{\Sigma} d \mathcal{A}(G \mathbf{n} \cdot \nabla \phi-\phi \mathbf{n} \cdot \nabla G) \tag{2a}\\
\text { with } \widetilde{C}=\int_{\mathcal{D}} d \mathcal{V} \delta(x-\widetilde{x}) \delta(y-\widetilde{y}) \delta(z-\widetilde{z})=\left\{\begin{array}{c}
1 \\
1 / 2 \\
0
\end{array}\right\} \text { if } \widetilde{\mathbf{x}} \text { lies }\left\{\begin{array}{l}
\text { inside } \mathcal{D} \\
\text { on } \Sigma \\
\text { outside } \mathcal{D}
\end{array}\right\} \tag{2b}
\end{gather*}
$$

Here and below, $\mathbf{x}=(x, y, z)$ and ϕ are nondimensional in terms of a reference length L and velocity U, i.e. one has $\mathbf{x}=\mathbf{X} / L$ and $\phi=\Phi /(U L)$. In (2b), the value $\widetilde{C}=1 / 2$ at a point $\widetilde{\mathrm{x}}$ of the boundary surface Σ assumes that Σ is smooth at $\widetilde{\mathbf{x}}$. Green's representation (2) defines the potential $\widetilde{\phi} \equiv \phi(\widetilde{\mathbf{x}})$ at a flow-field point $\widetilde{\mathbf{x}}$ in terms of boundary distributions of sources (with strength $\mathbf{n} \cdot \nabla \phi$) and normal dipoles (strength ϕ), and involves a Green function G and the first derivatives of G. In (2) and below, $\widetilde{\mathrm{x}}$ stands for a flow-field point, i.e. a point inside a 3D flow region \mathcal{D}, and x is a point of the boundary surface Σ of the flow region, i.e. a boundary point.

The general solution of the Poisson equation $\nabla^{2} G=\delta(x-\widetilde{x}) \delta(y-\widetilde{y}) \delta(z-\widetilde{z})$ is given by

$$
\begin{equation*}
4 \pi G=-1 / r+H=S+H \quad \text { with } \quad r=\sqrt{(x-\widetilde{x})^{2}+(y-\widetilde{y})^{2}+(z-\widetilde{z})^{2}} \tag{3}
\end{equation*}
$$

r is the distance between $\mathbf{x}=(x, y, z)$ and $\widetilde{\mathbf{x}}=(\widetilde{x}, \widetilde{y}, \widetilde{z})$, and $H(\mathbf{x} ; \widetilde{\mathbf{x}})$ stands for a function that is harmonic within the flow region \mathcal{D} (or a larger region that includes \mathcal{D}). Thus, the singular component S and the harmonic component H in (3) satisfy

$$
\nabla^{2} S=4 \pi \delta(x-\widetilde{x}) \delta(y-\widetilde{y}) \delta(z-\widetilde{z}) \quad \text { and } \quad \nabla^{2} H=0
$$

Application of Green's identity (1) to the potential ϕ and the functions S or H yield

$$
\begin{equation*}
4 \pi \widetilde{C} \widetilde{\phi}=\int_{\Sigma} d \mathcal{A}(S \mathbf{n} \cdot \nabla \phi-\phi \mathbf{n} \cdot \nabla S) \quad 0=\int_{\Sigma} d \mathcal{A}(H \mathbf{n} \cdot \nabla \phi-\phi \mathbf{n} \cdot \nabla H) \tag{4}
\end{equation*}
$$

2. Application to free-surface flows in deep water

The boundary surface Σ and the Green function G in Green's relations (2) and (4) are generic. These generic relations are now applied to free-surface flows about ships or offshore structures in deep water. The closed boundary surface Σ in (2a) consists of $\Sigma=\Sigma_{B} \cup \Sigma_{0} \cup \Sigma_{\infty}$. Here, Σ_{B} stands for the mean wetted hull of a rigid body (ship or structure) or, more generally, a control surface that encloses a rigid body; Σ_{0} is the portion of the mean free-surface plane located outside the "body" surface Σ_{B}; and Σ_{∞} joins Σ_{0} and Σ_{D} in the farfield. The unit vector $\mathbf{n}=\left(n^{x}, n^{y}, n^{z}\right)$ is normal to the boundary surface Σ and points into the flow domain, as already noted. Thus, $\mathbf{n}=(0,0,-1)$ at the free surface Σ_{0}. The Green function G in (2a) is presumed to vanish sufficiently rapidly in the farfield to nullify the contribution of the farfield boundary surface Σ_{∞}. Thus, the contribution of Σ_{∞} is ignored, and the free surface Σ_{0} is unbounded. Green's potential representation (2a) then becomes

$$
\begin{equation*}
\widetilde{C} \widetilde{\phi}=\int_{\Sigma_{B}} d \mathcal{A}(G \mathbf{n} \cdot \nabla \phi-\phi \mathbf{n} \cdot \nabla G)-\int_{\Sigma_{0}} d x d y\left(G \phi_{z}-G_{z} \phi\right) \tag{5}
\end{equation*}
$$

Here, the z axis is vertical and points upward, and the mean free surface is taken as the plane $z=0$. It is useful to use a Green function of the form

$$
\begin{equation*}
4 \pi G=-1 / r \pm 1 / r_{*}+H \quad \text { with } \quad r_{*}=\sqrt{(x-\widetilde{x})^{2}+(y-\widetilde{y})^{2}+(z+\widetilde{z})^{2}} \tag{6}
\end{equation*}
$$

$H(\mathbf{x} ; \widetilde{\mathbf{x}})$ is harmonic within the flow region \mathcal{D} (or a larger region that includes \mathcal{D}). Expressions (2b) and (6) show that $\widetilde{C}=1$ if the flow-field point $\widetilde{\mathbf{x}}$ is located at the free surface Σ_{0}. Thus, (2b) becomes

$$
\widetilde{C}=\left\{\begin{array}{c}
1 \tag{7}\\
1 / 2 \\
0
\end{array}\right\} \text { if } \widetilde{\mathbf{x}} \operatorname{lies}\left\{\begin{array}{l}
\text { in } \mathcal{D} \cup \Sigma_{0} \\
\text { on } \Sigma_{B} \\
\text { outside } \mathcal{D} \cup \Sigma_{B} \cup \Sigma_{0}
\end{array}\right\}
$$

3. Local-flow and wave decomposition

The harmonic function H in the basic Green-function representation (6) can be decomposed into a local-flow component and a wave component. Thus, a Green function of the form

$$
\begin{equation*}
4 \pi G=-1 / r+L+W=R+W \tag{8}
\end{equation*}
$$

is now considered. Here, the local-flow component L and the wave component W are presumed to satisfy the Laplace equations $\nabla^{2} L=0$ and $\nabla^{2} W=0$. The decomposition (8) is not unique. For instance, for diffraction-radiation of regular waves by an offshore structure, a particularly simple choice of Green function is defined in [1] as

$$
\begin{array}{ccc}
R=-1 / r-1 / r_{*}+2 / r_{f} & & W=-i f^{2} e^{f^{2} Z_{*}} \int_{-\pi}^{\pi} d t(1-\Theta) e^{-i \Phi} \\
r=\sqrt{h^{2}+Z^{2}} & r_{*}=\sqrt{h^{2}+Z_{*}^{2}} & r_{f}=\sqrt{h^{2}+Z_{f}^{2}} \\
\text { where } \left.\quad \begin{array}{lll}
h=\sqrt{X^{2}+Y^{2}} & X=\widetilde{x}-x & Y=\widetilde{y}-y \\
Z=\widetilde{z}-z & Z_{*}=\widetilde{z}+z & Z_{f}=Z_{*}-\sigma^{R} / f^{2}
\end{array}\right\} \\
\Phi=f^{2}(X \cos t+Y \sin t) \quad \Theta=\frac{\sinh \left(\Phi / \sigma^{W}\right)+i \sin \left(V / \sigma^{W}\right)}{\cosh \left(\Phi / \sigma^{W}\right)+\cos \left(V / \sigma^{W}\right)} \quad \text { with } V=f^{2} Z_{*}
\end{array}
$$

and $-V / \sigma^{W}<C^{W}<\pi$. This Green function, which only involves elementary functions of real arguments, satisfies the free-surface condition $G_{z}-f^{2} G=0$ at $z=0$ accurately in the farfield, but only approximately (to leading order) in the nearfield. The Rankine component R involves three elementary free-space Rankine sources: a unit source at the singular point $\mathbf{x}=(x, y, z)$, a unit source at the mirror image $(x, y,-z)$ of \mathbf{x} with respect to the mean free-surface plane $z=0$, and a "double" sink (strength 2) at the point $\left(x, y,-z+\sigma^{R} / f^{2}\right)$. This arrangement of elementary point sources and sinks satisfies the linear free-surface boundary condition $G_{z}-f^{2} G=0$ at $z=0$ to leading order, in both the nearfield and the farfield. The wave component is given by a one-dimensional Fourier superposition of elementary waves $e^{f^{2} Z_{*}-i \Phi}$. The radiation condition is satisfied via the function Θ; see [1,2]. More complicated Green functions that satisfy the linear free-surface boundary condition everywhere (in the nearfield as well as the farfield) can be used. These alternative free-surface Green functions are also of the form (8); see e.g. [3,4].

Using the Rankine-wave decomposition (8) of the Greeen function in (5), one obtains the representation $4 \pi \widetilde{C} \widetilde{\phi}=\widetilde{\phi}^{R}+\widetilde{\phi}^{W}$ of the potential $\widetilde{\phi}$ at a flow-field point $\widetilde{\mathbf{x}}$. Here, the Rankine potential $\widetilde{\phi}^{R}$ and the wave potential $\widetilde{\phi}^{W}$ correspond to the Rankine and wave components R and W in (8), and \widetilde{C} is given by (7). Thus, for diffraction-radiation of regular waves by an offshore structure, the potentials $\widetilde{\phi}^{R}$ and $\widetilde{\phi}^{W}$ are given by

$$
\begin{align*}
& \widetilde{\phi}^{R}=\int_{\Sigma_{B}} d \mathcal{A}(R \mathbf{n} \cdot \nabla \phi-\phi \mathbf{n} \cdot \nabla R)+\int_{\Sigma_{0}} d x d y\left[\left(R_{z}-f^{2} R\right) \phi-R\left(\phi_{z}-f^{2} \phi\right)\right] \tag{10a}\\
& \widetilde{\phi}^{W}=\int_{\Sigma_{B}} d \mathcal{A}(W \mathbf{n} \cdot \nabla \phi-\phi \mathbf{n} \cdot \nabla W)+\int_{\Sigma_{0}} d x d y\left[\left(W_{z}-f^{2} W\right) \phi-W\left(\phi_{z}-f^{2} \phi\right)\right] \tag{10b}
\end{align*}
$$

Use of expressions (9) for the Rankine and wave components R and W in (10) yields expressions for the potentials $\widetilde{\phi}^{R}$ and $\widetilde{\phi}^{W}$ that only involve elementary functions of real arguments. These simple expressions for $\widetilde{\phi}^{R}$ and $\widetilde{\phi}^{W}$ are given in [5]. Integration over the free surface Σ_{0} in (10) only needs to be performed over a finite nearfield portion of the unbounded free surface. In particular, the terms $R_{z}-f^{2} R$ and R in (10a) are $O\left(1 / \rho^{3}\right)$ as $\rho \equiv \sqrt{x^{2}+y^{2}} \rightarrow \infty$.

4. A seemingly paradoxical property

The wave component W in (8) satisfies the Laplace equation $\nabla^{2} W=0$, as already noted. It follows from (4) that the wave potential $\widetilde{\phi}^{W}$ in (10) is null, i.e. one has $\widetilde{\phi}^{W} \equiv 0$. However, the wave potential $\widetilde{\phi}^{W}$ is known to become exact in the horizontal farfield; specifically, one has $\widetilde{\phi}^{W} \sim 4 \pi \widetilde{\phi}$ as $\rho \equiv \sqrt{\widetilde{x}^{2}+\widetilde{y}^{2}} \rightarrow \infty$. This seemingly contradictory result can be explained if the unbounded free surface Σ_{0} is divided into a finite nearfield portion $\Sigma_{0}^{\text {near }}$ and an unbounded farfield portion $\Sigma_{0}^{f a r}$. Thus, the unbounded free surface is expressed as $\Sigma_{0}=\Sigma_{0}^{n e a r} \cup \Sigma_{0}^{f a r}$. Specifically, $\Sigma_{0}^{f a r}$ is taken here as the region $\rho_{\infty}<\rho$. Let $\widetilde{\phi}_{\text {near }}^{R}$ and $\widetilde{\phi}_{\text {near }}^{W}$ stand for the contributions of the finite nearfield boundary surface $\Sigma^{\text {near }}=\Sigma_{B} \cup \Sigma_{0}^{\text {near }}$ to the Rankine and wave potentials $\widetilde{\phi}^{R}$ and $\widetilde{\phi}^{W}$. One has

$$
\begin{array}{llll}
\widetilde{\phi}_{\text {near }}^{W} \approx 0 & \text { and } & \widetilde{\phi}_{\text {near }}^{N} \approx 4 \pi \widetilde{\phi} & \text { for } \tag{11}
\end{array} \rho \leq \rho_{\text {inner }}<\rho_{\infty}, ~ 子
$$

This property is numericallly illustrated and verified here by considering a simple axisymmetric flow generated by a pulsating point source. Specifically, consider the flow defined by the potential

$$
\begin{equation*}
\phi(\mathbf{x})=G(\mathbf{a} ; \mathbf{x}) \quad \text { with } \quad \mathbf{a}=(0,0,-0.1) \quad \text { and } \quad f=2 \tag{12}
\end{equation*}
$$

Here, G stands for the free-surface Green function defined by (8) and (9) with $\sigma^{R}=1, \sigma^{W}=3$, $C^{W}=2.3$. The flow due to the pulsating source (12) is considered for the unbounded flow region that is outside a spherical boundary surface Σ_{B}, taken as the half sphere $\sqrt{x^{2}+y^{2}+z^{2}}=1$ with $z \leq 0$. The flow $\widetilde{\phi}_{\text {near }}$ associated with (12) is defined by (10) in terms of the flux $\mathbf{n} \cdot \nabla \phi$ at Σ_{B}, the potential ϕ at $\Sigma_{B} \cup \Sigma_{0}^{\text {near }}$ and the pressure $\phi_{z}-f^{2} \phi$ at $\Sigma_{0}^{\text {near }}$. These three forcing terms, easily evaluated from (9), are depicted in Fig. 1 along the line defined by $y=0$ and

$$
\left.\begin{array}{lll}
x=\sin (\pi t / 2) & z=-\cos (\pi t / 2) & \text { with } 0 \leq t \leq 1 \tag{13}\\
x=t & z=0 & \text { with } 1 \leq t \leq 18
\end{array}\right\}
$$

Fig. 1 shows that the pressure $\phi_{z}-f^{2} \phi$ at the free surface Σ_{0} decays rapidly as t increases, i.e. away from the (spherical) boundary surface Σ_{B}. The "input" potential $\widetilde{\phi}$ given by (12) and the Rankine potential $\widetilde{\phi}^{R} /(4 \pi)$ and wave potential $\widetilde{\phi}^{W} /(4 \pi)$, reconstructed using the boundary-integral representation (10), are depicted in Fig. 2 and Fig. 3 along the line

$$
\left.\begin{array}{lll}
x=(1+\mu) \sin (\pi t / 2) & z=-(1+\mu) \cos (\pi t / 2) & \text { with } 0 \leq t \leq t^{*} \tag{14}\\
x=t & z=-\mu & \text { with } t^{*} \leq t \leq 18
\end{array}\right\}
$$

and $t^{*}=(2 / \pi) \cos ^{-1}[\mu /(1+\mu)]$. The line (14) is located inside the flow region, at a distance μ (taken equal to 0.03 here) from the line (13).

Fig. 2 depicts the potential (12) and the Rankine potential $\widetilde{\phi}^{R} /(4 \pi)$ with ρ_{∞} taken equal to 6 or 12. Thus, the radius ρ_{∞} of the nearfield region $\Sigma_{0}^{\text {near }}$ of the unbounded free surface is taken equal to 6 or 12 in Fig.2. This figure shows that $\widetilde{\phi}_{\text {near }}^{R} \approx 4 \pi \widetilde{\phi}$ in an inner region $\rho \leq \rho_{\text {inner }}<\rho_{\infty}$ and that $\widetilde{\phi}^{R}$ vanishes rapidly for $\rho_{\infty}<\rho$, in accordance with (11). The radius $\rho_{\text {inner }}$ of the inner region, roughly equal to 5 for $\rho_{\infty}=6$ or to 11 for $\rho_{\infty}=12$, increases as the radius ρ_{∞} of the nearfield region $\Sigma_{0}^{\text {near }}$ of the free surface increases, and one may presume that $\rho_{\text {inner }} \rightarrow \infty$ as $\rho_{\infty} \rightarrow \infty$. Similarly, Fig. 3 depicts the potential (12) and the wave potential $\widetilde{\phi}^{W} /(4 \pi)$ with ρ_{∞} taken equal to 6 or 12 , as in Fig.1. Fig. 2 shows that $\widetilde{\phi}_{\text {near }}^{W} \approx 4 \pi \widetilde{\phi}$ in an outer region $\rho_{\infty}<\rho_{\text {outer }} \leq \rho$ and that $\widetilde{\phi}_{\text {near }}^{W} \approx 0$ in an inner region $\rho \leq \rho_{\text {inner }}<\rho_{\infty}$, in agreement with (11). Fig. 3 shows that one has $\rho_{\text {inner }} \approx 1$ and $\rho_{\text {outer }} \approx 10$ for $\rho_{\infty}=6$; and $\rho_{\text {inner }} \approx 6$ and $\rho_{\text {outer }} \approx 16$ for $\rho_{\infty}=12$. Thus, the radius $\rho_{\text {inner }}$ of the inner region increases with the size of the nearfield free-surface region $\Sigma_{0}^{\text {near }}$, and one may presume that $\rho_{\text {inner }} \rightarrow \infty$ as $\rho_{\infty} \rightarrow \infty$.

5. Additional results

Implications of the property (11) and related numerical results given in Fig. 2 and Fig. 3 will be discussed at the Workshop. Alternative boundary integral representations suited for nearfield and farfield flows will also be presented, and numerically illustrated for wave diffraction-radiation by an offshore structure. A more detailed account of this study will be reported in [5].

References

[1] F. Noblesse, C. Yang (2004) "A simple Green function for diffraction-radiation of timeharmonic waves with forward speed", Ship Technology Research 51:35-52
[2] F. Noblesse, C. Yang (2006) "Elementary water waves", J. Engineering Mathematics, in press
[3] F. Noblesse (1982) "The Green function in the theory of radiation and diffraction of regular water waves by a body", J. Engineering Mathematics 16:137-169
[4] B. Ponizy, F. Noblesse, M. Ba, M. Guilbaud (1994) "Numerical evaluation of free-surface Green functions", J. Ship Research 38:193-202
[5] C. Yang, R. Espinosa, R. Löhner, F. Noblesse (2007) "Alternative boundary-integral representations for wave diffraction radiation by offshore structures", Il J. Society Offshore and Polar Engineering, submitted

Figures

Fig. 1 (top of right column) Flux $\mathbf{n} \cdot \nabla \phi$ at Σ_{B}, potential ϕ at $\Sigma_{B} \cup \Sigma_{0}^{\text {near }}$ and pressure $\phi_{z}-f^{2} \phi$ at $\Sigma_{0}^{\text {near }}$. The free-surface pressure $\phi_{z}-f^{2} \phi$ vanishes rapidly in the farfield.
Fig. 2 (center of right column) Input potential $\widetilde{\phi}$ given by (12) and Rankine potential $\widetilde{\phi}^{R} /(4 \pi)$ for free-surface integration truncated at $\rho_{\infty}=6$ and $\rho_{\infty}=12$. The Rankine potential $\widetilde{\phi}^{R}$ is exact in the nearfield and vanishes rapidly in the farfield.
Fig. 3 (bottom of right column) Input potential $\widetilde{\phi}$ given by (12) and wave potential $\widetilde{\phi}^{W} /(4 \pi)$ for free-surface integration truncated at $\rho_{\infty}=6$ and $\rho_{\infty}=12$. The wave potential $\widetilde{\phi}^{W}$ is null in the nearfield and becomes exact in the farfield.

