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1 Introduction

In the linear theory of wave interactions with floating bodies, trapping structures demonstrate
examples of nonuniqueness. Most work on this topic is focused on fixed bodies, and on the
existence of nontrivial solutions of the homogeneous boundary-value problem for the velocity
potential. McIver [1] established the existence of fixed trapping structures in two dimensions.
Her approach has been used subsequently to show that a variety of these structures exist in
both two and three dimensions. McIver and McIver [2,3] have shown that similar structures
exist which support trapped modes when they are freely floating and moving in an oscilla-
tory manner. To distinguish between these two complementary problems, the terms ‘sloshing
trapping structure’ and ‘motion trapping structure’ are introduced in [2] and [3].
The two-dimensional constructions in [1] and [2] are based on tracing the streamlines gen-

erated by pairs of symmetrical singularities on the free surface which are separated by one-half
wavelength (or, more generally, an integer plus one-half wavelengths). Thus there are no radi-
ated waves in the far field. For the sloshing trapping structure a pair of wave sources is used.
For the motion trapping structure, wave sources and wave-free singularities are combined, such
that the total dipole moment vanishes in the far field, and it follows from Green’s theorem that
non-zero body motions can exist without an exciting force.
In the present work a connection is made between these two complementary problems by

considering the more general case where a floating body is restrained by a linear restoring force,
represented by a nondimensional restoring coefficient (or ‘spring constant’) k. In the limit
k = 0, the body is free and the family of motion trapping structures is recovered. Conversely,
if k → ±∞, the body is fixed and sloshing trapping structures are recovered. Structures with
different profiles are found in the intermediate regimes k < 0 and k > 0.
The construction for the more general case uses a linear combination of the singularities

required in the two complementary limits. One minor change from the analysis in [2] is the use
of quadrupoles to represent the component associated with motion trapping structures, instead
of the combination of sources and wave-free singularities. That particular combination, with
zero dipole moment in the far field, is equivalent to a vertical quadrupole defined as the second
z-derivative of the source. Thus we consider here the streamlines and body profiles generated by
pairs of sources and quadrupoles. If the source strength is zero, motion trapping structures are
generated; if the body is fixed, sloshing trapping structures are generated. In the intermediate
regime where a finite restoring force exists, different trapping structures are found. To simplify
the analysis we restrict our attention to vertical (heave) motion of a two-dimensional body in
a fluid of infinite depth.
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2 Analysis

The motion is harmonic with frequency ω in the plane x, z, where z = 0 is the free surface and
z is positive upwards. The coordinates are nondimensionalized with respect to the wavenumber
K = ω2/g. Thus the wavelength is 2π and the free-surface condition is φ − φz = 0 on z = 0.
We define the complex variable Z = z + ix and the complex potential F = φ + iψ, where φ is
the velocity potential and ψ the stream function.
For a pair of point sources of oscillatory strength, situated at x = ±π/2 on the free surface,

the complex potential can be expressed in the form

Fs = e
(Z+iπ/2)E1(Z + iπ/2) + e(Z−iπ/2)E1(Z − iπ/2) − 2πH(π/2 − |x|)eZ . (1)

Here E1 is the exponential integral, defined as in [4], and H(π/2− |x|) is equal to 1 if |x| < π/2,
otherwise zero. The harmonic time-dependence has been factored out, taking advantage of the
fact that the usual out-of-phase components are canceled by the half-wavelength spacing. For
a pair of quadrupoles at the same points, the complex potential is

Fq =
∂2Fs

∂Z2
. (2)

As |Z| → ∞, Fs � 2Z−1 and Fq � 4Z−3. Thus Fs is ‘dipole-like’ in the far field, and Fq is a
higher-order singularity with zero dipole moment. Note that from the physical viewpoint (1)
represents a pair of sinks with negative flux, since Fs � − log(Z ∓ iπ/2) as Z → ±iπ/2.
Following the analysis of a freely-floating structure in [2], the solution of the equation of

motion for heave will admit nontrivial homogeneous solutions if (a) there is no damping, and
(b) the sum of the inertial and restoring forces is zero. Zero damping is ensured for any motions
associated with the singularities (1) and (2), since there is no radiated wave energy. The second
condition corresponds to the equation (cf. [2], equation 4)

ρgW (1 + k)− ω2(M + a) = 0. (3)

Here ρgW is the hydrostatic restoring force with ρ the fluid density and W the width of the
waterplane, and k is a nondimensional external restoring coefficient. M is the body mass and
a the added mass. From Green’s theorem it can be shown ([2], equation 18) that

ρgW − ω2(M + a) = −πµρω2, (4)

where µ is the far-field dipole moment, defined such that the asymptotic approximation of the
potential φ0 for unit heave velocity is

φ0 � −µKRe(Z−1) as |Z| → ∞. (5)

Thus a necessary condition for a trapping mode to exist is

k = πµK/W. (6)

3 Streamlines and body profiles

We consider the streamlines ψ =constant, associated with the complex potential

F = SFs + QFq − V (Z + 1). (7)

Here S is the source strength, Q the quadrupole strength, and V is the heave velocity. The
parameters S,Q, V are real, and nondimensionalized by ω and g. From (5) and (6) it follows
that

k = −(2πS/KWV ). (8)
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Without loss of generality it can be assumed that V ≥ 0. Thus, for a positive restoring
coefficient, the source strength S must be negative (corresponding to a source with positive
flux). Conversely, if S > 0 (a sink), the mooring restraint is inertial.
Streamlines which surround the singular points x = ±π/2 below the free surface correspond

to the profiles of trapping structures moving with vertical velocity (g/ω)V . By tracing the
streamlines numerically, it can be shown that such profiles do in fact exist, for most but not all
combinations of the parameters S,Q, V .
If all three parameters are nonzero, Q and V must have the same sign. The variety of

possible structures is illustrated in Figure 1, for Q = V and |S| + Q = 1. In all cases there
is at least one streamline which surrounds the singular point x = π/2 in the domain below
the free surface, defining the profile of a trapping structure. For small values of S and k this
profile is similar to the case S = 0. In this regime one profile exists, with a stagnation point
where it intersects the dividing streamline. As |S| increases the stagnation point and dividing
streamline shift toward the right (S > 0) or left (S < 0), with more significant changes. For
S = 0.7 (approximately) the right side of the body profile is vertical at the free surface and
for S > 0.7 the vertical component of the interior normal vector is positive at all points. In
this regime trapping structures exist which satisfy one of John’s uniqueness requirements for
fixed structures, that no vertical lines starting in the free surface intersect the body. On the
other hand, for S ≤ −.7 the stagnation point is on the vertical axis and the body profile
which intersects this point is continuous with its reflection in x < 0; thus a single closed body
is represented without an interior free surface, satisfying the other uniqueness requirement of
John. In both cases, for larger values of |S|, a family of additional streamlines surround the
singular point within the interior of the profile which intersects the stagnation point; in the
limit S → ±1 this family corresponds to the profiles of the fixed trapping structures in [1].
If V = 0 the body is fixed. For Q = 0 there is a family of profiles, as in [1]. Similar profiles

exist for Q/S > 0. There is apparently no upper bound on Q/S, but the domain Q/S > 10 has
not been explored. Similar profiles exist also for small negative values of Q/S, but this range
is limited to, approximately, −0.6 < Q/S < 0. Within these ranges, sources and quadrupoles
can be combined to generate fixed trapping structures which generalize the results in [1]. The
principal effect of the quadrupole is to induce a stagnation point on the innermost body profile.
If V > 0 the body is moving. For S = 0 there is a single profile for each value of Q/V > 0,

as shown in [2]; in that case the body is free, with no external restraint. It is not necessary to
include quadrupoles if the body is moving and restrained. For Q = 0 and small positive values
of S/V there is one profile with a stagnation point for each value of S/V ; for large positive
values of S/V there is a family of profiles similar to the V = 0 case. For small negative values of
S/V there is no profile, but for S < −0.8V a profile exists with no interior free surface, similar
to the lower left plot in Figure 1. Note that in the latter case the source flux is positive, and
the streaming flow is downward. It is remarkable that a closed body is formed in this case, on
the downstream side of the sources.
A corresponding analysis has been made for the axisymmetric three-dimensional case, ex-

tending the results in [3]. The streamlines and profiles are qualitatively similar to those shown
in Figure 1. Computations of the damping and added-mass coefficients for these structures
confirm that the equation of motion is homogeneous.
It is not surprising that a wide variety of moored trapping structures exist. There are many

examples of bodieswith zero heave damping at a particular frequency, and for the corresponding
values of the added mass, displaced mass, and waterplane area a suitable value of the restoring
coefficient k can be found such that (3) is satisfied. Analogous results have been derived by
Kyozuka and Yoshida [5], for resonant motions of bodies generated by wave-free singularities.
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Figure 1: Streamlines generated by the complex potential (7) with Q = V = 1 − |S|. In the left column S < 0
and k > 0, and conversely in the right column. The body profile is shown by the heavy line. The dividing
streamline intersects this profile normally at the stagnation point. The singular point x = π/2 is marked by a
filled circle. Reflected streamlines for x < 0 are not shown.
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�. Green’s classical potential representation

Consider a finite 3D regionD bounded by a closed surface Σ . The divergence theorem applied
to the function φ∇G−G∇φ yields the classical Green identity

D
dV (φ∇2G−G∇2φ) =



Σ
dA (G n ·∇φ− φ n ·∇G) (1)

where dV and dA stand for differential elements of volume or area of the regionD or the boundary
surface Σ , and n is a unit vector that is normal to Σ and points inside D. For a function φ ≡ φ(x)
that satisfies the Laplace equation ∇2φ = 0 within D, and a Green function G ≡ G(x ; x) that
satisfies the Poisson equation ∇2G = δ(x− x) δ(y − y) δ(z − z) in D, or in a larger region that
includes D, (1) yields Green’s classical boundary-integral representation

C φ =


Σ
dA (G n ·∇φ− φ n ·∇G) (2a)

with C =


D
dV δ(x− x) δ(y − y) δ(z − z) =





1
1/2
0



 if x lies





inside D
on Σ
outside D



 (2b)

Here and below, x = (x , y , z) and φ are nondimensional in terms of a reference length L and
velocity U , i.e. one has x = X/L and φ = Φ/(UL). In (2b), the value C = 1/2 at a point
x of the boundary surface Σ assumes that Σ is smooth at x . Green’s representation (2) defines
the potential φ ≡ φ(x) at a flow-field point x in terms of boundary distributions of sources (with
strength n ·∇φ ) and normal dipoles (strength φ ), and involves a Green function G and the first
derivatives of G . In (2) and below, x stands for a flow-field point, i.e. a point inside a 3D flow
region D, and x is a point of the boundary surface Σ of the flow region, i.e. a boundary point.

The general solution of the Poisson equation∇2G = δ(x− x) δ(y − y) δ(z − z) is given by

4πG = −1/r + H = S + H with r =


(x− x)2+ (y− y)2+ (z− z)2 (3)
r is the distance between x = (x, y , z) and x = ( x, y , z ) , and H(x ; x) stands for a function
that is harmonic within the flow region D (or a larger region that includes D). Thus, the singular
component S and the harmonic component H in (3) satisfy

∇2S = 4π δ(x− x) δ(y − y) δ(z − z) and ∇2H = 0

Application of Green’s identity (1) to the potential φ and the functions S or H yield

4π C φ =


Σ
dA (S n ·∇φ− φ n ·∇S ) 0 =



Σ
dA (H n ·∇φ− φ n ·∇H ) (4)

2. Application to free-surface flows in deep water

The boundary surface Σ and the Green function G in Green’s relations (2) and (4) are generic.
These generic relations are now applied to free-surface flows about ships or offshore structures in
deep water. The closed boundary surface Σ in (2a) consists of Σ = ΣB ∪ Σ0 ∪ Σ∞ . Here, ΣB

stands for the mean wetted hull of a rigid body (ship or structure) or, more generally, a control
surface that encloses a rigid body; Σ0 is the portion of the mean free-surface plane located outside
the “body” surface ΣB ; and Σ∞ joins Σ0 and ΣD in the farfield. The unit vector n = (nx, ny, nz )
is normal to the boundary surface Σ and points into the flow domain, as already noted. Thus,
n = (0 , 0 ,−1) at the free surface Σ0 . The Green function G in (2a) is presumed to vanish
sufficiently rapidly in the farfield to nullify the contribution of the farfield boundary surface Σ∞ .
Thus, the contribution of Σ∞ is ignored, and the free surface Σ0 is unbounded. Green’s potential
representation (2a) then becomes




