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Introduction

The need for prediction tools for strongly nonlinear wave-body interaction poses
new challenges within the field of marine hydrodynamics. This is an area that is very
open. We foresee requests from industry, for example, for a next generation of wave
analysis tools that are beyond the second and third order theories that routinely are
used today. Several special solutions exist, for geometries of special shape and in cases
where the flow everywhere can be assumed to be smooth. Numerical solutions are
derived for local splashy and breaking flows, but the procedures are not easily adaptive
to the complete wave diffraction-radiation problem, however.

Here we are testing out a formulation in wavenumber space where a part of the
solution locally may contain breaking. More generally, we are deriving an outer solution
that is smooth such that potential theory can be used, and is obtained in Fourier space.
An inner solution may be non-smooth and contain local breaking. It may be computed
by a numerical method that can tackle fluid motion that breaks locally or violently runs
up along a geometry including green water on deck. The motion is highly nonlinear
which means a significant transfer of energy to high wavenumbers. This also means
that the effect is local in physical space.

A domain decomposition method in two dimensions has recently been tested out.
The less violent flow at a distance from the ship is described using a boundary element
method. This reduces the computational time which is a major limiting factor for
practical applications. Two-dimensional results reported so far are promising, see e.g.
Greco, Colicchio and Faltinsen (2005). A strategy for real world problems should
involve the computations of realistic geometries in three dimensions, and represents
the next step.

In this presentation we shall be concerned with the outer flow problem. The deriva-
tions are put into the perspective of a method that is under development and testing.
It is interesting to test how well the method will perform in practice, and if it is useful
or not. Here we will describe how to obtain the smooth flow outside a fixed vertical
circular cylinder contour that is exposed to incoming nonlinear waves. The waves are
nonbreaking and have finite vertical excursion along the cylinder contour. Variants of
this problem has previously been studied by several authors, and solutions are obtained
in different ways. A recent method was developed by Bonnefoy et al. (2006). Here, we
obtain the mathematical solution in spectral space. Eventual matching strategies will
follow the developments in two dimensions and will not be discussed here. A prelim-
inary version of the equations was presented in Grue (2005). Here we take next step
and solve the integral equation on the body surface that comes out of the formulation.
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Equations for the motion of the free surface

The formulation assumes the application of potential theory. The wave potential is
denoted by φ. We introduce horizontal space coordinates by (x1, x2), vertical coordinate
by y and let t denote time. Further, we let �φ denote the value of the potential at the
free surface. In order to integrate the wave surface forward in time we need to know

the normal velocity of the wave surface obtained by V = ∂φ/∂n
�
1 + |∇η|2.

Let F denote Fourier transform over the free surface where the values inside the
cylinder are put to zero. The variable F(V ) is obtained by an iteration where the
leading contributions are (Grue, 2005)

F(V1)

k
= F( �φ) + ΦB1, (1)

F(V2)

k
= −F(ηV1)− i

k

k
· F(η∇ �φ), (2)

where V = V1 + V2 + ..., η denotes the wave elevation outside the cylinder, ∇ the
horizontal gradient, k the wavenumber and k = |k|. Equations (1)–(2) represent the
first steps of an iteration to obtain the fully nonlinear wave field (expressed by V , η
and �φ). This iteration strategy is very accurate and efficient and has been tested out
in the case when there is no geometry in the fluid (ΦB1 = 0), see Fructus et al. (2005).

The new task is to evaluate the contribution due to the geometry which is expressed
by the integral

ΦB1(k) = − ∂

∂K

� 2π

0

� 0

−∞
ψ�

B(z
�, θ�)e−iK cos(α−θ�)dz�adθ�, (3)

where a denotes the cylinder radius, K = ka and k = k(cosα, sinα). In (3) we have
replaced the wave potential at the body surface, φB(y, θ), by ψB(z, θ), where y and z
are related by y = z+ η0(θ), and η0(θ) denotes the wave elevation along the water line
of the cylinder. The integral in (3) requires the solution of the wave potential ψB at
the cylinder surface. (There are also contributions by some higher order moments of
the integral.)

Integral equation for the wave potential at the geometry
Let

L0(φB) = φB +
� 1
2π

�

SB

φ�
B

1

r

�

0
+ F−1{ekz[−ΦB1]}, (4)

H0 = 2F−1{ekzF( �φ)}, (5)

where r denotes the distance between two points on the body surface, and z is related
to y by y = z + η0. The integral equation reads

L0(φB) = H0( �φ) + remainder (6)

where the remainder is obtained by an implicit formulation including all nonlinear
terms. The task is to invert L0(φB). Let

ψB(z, θ) =
∞�

m=−∞
fm(z)e

imθ, f−m(z) = f ∗
m(z). (7)
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Then (1)–(2) gives

fm(z)− a
� 0

−∞
dz�fm(z

�)
� ∞

0
kdkJm(ak)J

�
m(ak)e

−k|z−z�|

+a
� ∞

0
kdkekzJm(ak)J

�
m(ak)

� 0

−∞
dz�fm(z

�)ekz�dz�

=
2im

(2π)2

� ∞

0
kdkekzJm(ak)

� 2π

0
dαe−imαF( �φ). (8)

Let ez = (1 + u)/2. Then (−∞, 0] → [−1, 1]. Let fm(z) = Fm(u). The equation
becomes

Fm(u) +
� ∞

0
kdkJm(ak)J

�
m(ak)Km(u, k)

=
1

π

� ∞

0
kdk

�1 + u

2

�k
Jm(ak)

� � ∞

−∞
Jm(kr

�) �φ(x�)dx�, (9)

where Jm denotes Bessel function of the first kind of order m. The kernel is expressed
by

Km(u, k) = −a
� 0

−∞
dz�fm(z

�)e−k|z�−z| + aekz
� 0

−∞
dz�fm(z

�)ekz� . (10)

Let Fm(u) =
�∞

n=0B
m
n Tn(u) where Tm(u) are the Chebychev polynomials on the inter-

val [−1, 1]. This gives

∆inB
m
i +a

∞�

n=0

Bm
n

� ∞

0
dkJm(ak)J

�
m(ak)[−πδin + Tin(k) + kgi(k)hn(k)]

=
1

π

� ∞

0
kdkgi(k)Jm(ak)

� � ∞

−∞
Jm(kr

�) �φ(x�)dx� (11)

to determine the coefficients Bm
n , where,

hn(k) =
1

k
− n

k

� π

0
sin(ns)

�1 + cos s
2

�k
ds, (12)

gi(k) =
� π

0
cos is

�1 + cos s
2

�k
ds, (13)

Tin(k) =
� π

0
cos is ds

� π

0
n sinns� ds�f2(s, s

�), (14)

f2(s, s
�) =

�
1 + cos s�

1 + cos s

�k

,
1 + cos s�

1 + cos s
≤ 1, (15)

f2(s, s
�) = −

�
1 + cos s

1 + cos s�

�k

,
1 + cos s

1 + cos s�
< 1, (16)

and ∆00 = π, ∆in = δinπ/2, n ≥ 1. We end up by evaluating integrals of the kind

� ∞

0
J2

m(k)
�1 + C �

1 + C

�k
dk =

� ∞

0
J2

m(k)e
−βkdk =

1

π
Q

m− 1
2
(1 + 1

2
β2), (17)

β =
��� ln

1 + C �

1 + C

���, C � = cos s�, C = cos s, (18)
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where Qν(Z) are Legendre functions of the second kind. The functions are obtained
by means of a recursion, i.e.

Qν+1(Z) =
1

ν + 1

�
(2ν + 1)ZQν(Z)− νQν−1(Z)

�
(19)

etc. The two first contributions are evaluated by

Q−1
2
(ζ) =

Γ(1
2
)Γ(1

2
)

2
1
2Γ(1)

ζ−
1
2F (3

4
, 1

4
; 5

4
; ζ−2), (20)

Q1
2
(ζ) =

Γ(3
2
)Γ(1

2
)

2
3
2Γ(2)

ζ−
3
2F (5

4
, 3

4
; 7

4
; ζ−2), (21)

where

1

ζ2
=

1
�
1 + 1

2

��� ln 1+C�

1+C

���
2�2 , (22)

and F denotes the Hypergeometric function defined by

F (3
4
, 1

4
; 5

4
; ζ−2) = 1

B(
1
4
, 5

4
)

� 1
0 t

−3
4 (1− t/ζ2)−

3
4dt, (23)

F (5
4
, 3

4
; 7

4
; ζ−2) = 1

B(
3
4
, 7

4
)

� 1
0 t

−1
4 (1− t/ζ2)−

5
4dt, (24)

where B(1
4
, 5

4
) = Γ(5

4
)/[Γ(1

4
)Γ(1)] and B(3

4
, 7

4
) = Γ(7

4
)/[Γ(3

4
)Γ(1)].

The formulation is under implementation. Numerical results for linear and second
order waves will be displayed at the Workshop. Although the scheme outlined in the
present version appears in a perturbation like form, it is fully nonlinear. It is just to
continue the iteration taking into account the full contributions on the r.h.s. of the
integral equations. It is important to note that, if the leading terms of the iteration
are easily obtained, then the iteration will be efficient. Once the body potential is
obtained, the function (3) is evaluated, and the entire wave field can be integrated
forward in time.
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