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Introduction

When considering numerical simulation of
extreme wave loading on floating offshore
wave energy devices it is important that the
model should include both viscous effects and
wave breaking. This usually means solving
the Navier Stokes or RANS equations
together with a two-fluid interface capturing
approach, such as level set or volume of fluid
(VoF), in which the fluid dynamics equations
are solved both in the air and water. Recent
advances in development of high resolution
advection schemes for the interface mean that
some of the previous disadvantages of these
methods, such as interface smearing, have
been overcome (see e.g.Ubbink, 1997).

In this work, adaptive hierarchical grids
are applied to simulation of viscous free
surface waves over a submerged cylinder in a
stationary tank and to breaking waves in a
periodic  domain. The Navier-Stokes
equations are discretised using finite volumes
with collocated primitive variables and solved
using an operator splitting algorithm. A VoF
approach is used for the evolving free surface,
with a high resolution interface capturing
scheme for advection of the interface. The
equations are solved on adapting quadtree
grids combined with Cartesian cut cells
(Causon et al. 2000) and the methodology is
described in detail by Greaves (2006).

Wave loading on a submerged cylinder

A submerged cylinder of diameter d =
0.2h, where /4 is the mean depth of liquid in
the tank, is positioned at the horizontal centre
of a unit square tank at depth 0.5/4 below the
liquid surface. The liquid is given an initial

cosine wave elevation, 7 =acos(2mx/b),

where x is measured along the length of the
tank, b is the length of the tank and a = 0.024
is the wave amplitude. The fluid Reynolds

number for the wave, Re:h@ /u = 200.

The quadtree grid has maximum division
level equal to 7 and minimum division level
(background grid resolution) equal to 5 (7x5
quadtree grid). A refinement band of 10 cells
is maintained around the cylinder boundary as
well as the interface and the grid adapts
dynamically to maintain this interface band at
each time step.

Figure 1 Free surface and adapted grid, cosine
wave

The adapted grid at the first peak is shown
in Figure 1 and the time history of the wave
recorded at the centre of the tank is plotted in
Figure 2 together with the wave-only case for
comparison. The effect of the submerged
cylinder is to dampen and cause a slight time
lag in the wave motion at the free surface.
The force on the cylinder is calculated by
integrating the pressure and viscous shear
stress around the cylinder and recorded at
each time step. The hydrostatic force is
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subtracted from the vertical force component
and the hydrodynamic forces plotted in
dimensional form in Figure 3.
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Figure 2 Wave elevation time history at the
centre of the tank, Re=200 cosine wave
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Figure 3 Time history of forces on submerged
cylinder, Re = 200 cosine wave

The horizontal force is approximately zero,
the vertical force is much larger and oscillates
with the same frequency as, but exactly 180°
out of phase with, the wave motion.
Considering the fluid kinematics under the
centre of the symmetric cosine wave, the
velocity is mainly in the vertical direction and
so the vertical force is the in-line force. The
phase of the vertical hydrodynamic force
suggests that it is dominated by the inertia of
the accelerating fluid. It is maximum when
the vertical fluid acceleration is maximum at
the troughs of the wave motion, and minimum
when the acceleration is a minimum at the
wave peaks. This is to be expected for cases
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such as this, in which the amplitude of the
motion is small compared with the diameter
of the cylinder (Bearman et al. 1985).

In the next case, the fluid Reynolds
number for the wave, Re = 200, a = 0.024 and
the liquid is given an initial sine wave
elevation, 7=asin(2zx/b). The cylinder is

submerged at depth 0.254, as above, and the
adapted grid and free surface profile after half
a wave period are shown in Figure 4. The
wave elevation time history at x = b/4 is
plotted in Figure 5 and the horizontal and
vertical ~ hydrodynamic forces (with
hydrostatic =~ component  subtracted) are
presented in Figure 6.

Figure 4 Free surface and adapted grid, sine
wave
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Figure 5 Wave elevation history at x=b/4,
Re =200 sine wave

Wave damping caused by the cylinder is
stronger in this case and the wave frequency



is also reduced, as noted above. The
undisturbed sine wave is asymmetric and at
the cylinder position the horizontal velocity
oscillates and the wvertical velocity is
approximately zero, thus, in this case, the in-
line force on the cylinder is the horizontal
force. This is shown in Figure 6, where after
an initial disturbance the vertical force tends
to approximately zero and the horizontal force
oscillates with the same frequency and in
phase with the wave motion recorded in
Figure 5. As before, the horizontal force is
mainly due to fluid inertia; when the wave
peak is at x = b/4, the horizontal fluid
acceleration (and horizontal force) at the
cylinder is maximum, and when the wave
trough is at x = b/4, the acceleration (and
horizontal force) is at its minimum.
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Figure 6 Time history of forces on submerged

cylinder under a sine wave, Re =200

Wave breaking in a periodic domain

A steep gravity water wave is simulated in
a domain with periodic boundary conditions.
The fluid properties and initial conditions are
the same as those used by Chen et al. (1999)
and Iafrati (2006). The width of the domain
is one wavelength, b = , and the water depth
is h = b/2. The ratio of density in air and
water is 0.01 and the ratio of dynamic
viscosities is 0.4. The initial condition for the
wave elevation, 1is
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n(x,0) = acos(kx ) +%a2kcos(2kx )

+§a3k2005(3kx )

where k =27/, a is the wave amplitude and
the initial wave slope ¢=ak = 0.55. The
initial velocity field in the water is

u(x,9,0) = wae® cos(kx ) and
W(x,1,0) = wae™sin(kx ),

where a):\/gk(l—kzaz) and the air is

initially at rest. The acceleration due to
gravity, g = 1.0m/s> and the liquid Reynolds
number, Re= (g1/2/13/2 /u)lz 1000. The

simulation is calculated on a regular 256 x
256 grid.
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Figure 7 Time sequence of wave profiles

The time sequence of free surface profiles
are illustrated in Figure 7, the profiles are
plotted with the mean water level at their
simulation time in seconds in the vertical
direction and a second wavelength is plotted
on the right hand side of each to clarify the
figure. The steepening of the wave and
development of a plunging jet is clearly seen.
The jet makes contact with the free surface,
entraining air, and then splashes up and
makes contact again with the free surface
entraining a second air pocket.  Further
splashing up of the jet to begin entraining a
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third air pocket may be seen beyond this.
Similar effects were observed in numerical
calculations by lafrati (2006) and Chen et al.
(1999) and in photographs of experiments by
Rapp and Melville (1990).

Individual free surface profiles are given in
Figures 8 and 9 at non-dimensional times,

t=t/A/g= 0.56 and 1.76, together with

the velocity vectors plotted every 16 cells.
The velocity fields are visually similar to
those predicted by Chen et al. (1999) and
measured by Perlin ef al. (1996) with features
evident, such as the high velocities in the
prominent jet. However, there are also some
differences, such as the more rounded jet and
slower progression to breaking predicted here.
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Conclusions

This new two-fluid Navier-Stokes solution
method, using adaptive quadtree grids
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combined with Cartesian cut cells shows good
potential for simulating violent interactions
between waves and offshore structures. The
method can predict complex deformation and
break up of the free surface as well as detailed
flow kinematics and fluid loading on
structures.
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