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�  Introduction 
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As well known, within Wagner’s approach to the water impact problem, the usual Dirichlet’s 
condition at the free surface can be asymptotically interpreted as the infinite frequency limit of the 
linear floating body problem (see, e.g. Mei, 1983, p. 11; Newman, 1977, p. 298; Faltinsen, 1990, p. 
286). This motivates us to extend to the water impact problem the Hamilton’s principle postulated by 
Miloh p. 231, 1984, there in the context of the oscillating floating body at a free surface (FBP). For 
simplicity, we restrict our analysis to the vertical impact case (VWIP). To the authors’ knowledge, the 
novelty is related to the proper consideration of the dissipated energy through the jet root in the 
Hamiltonian, as done with the wave damping in the FBP, what leads to a corresponding Rayleigh’s 
dissipation function. This is achieved with the aid of a possible interpretation of the added mass as an 
explicit function of the body penetration depth, as in Pesce, 2003, p.7541.

�  The field equation and nonlinear boundary conditions 
Analogously to the Lagrangian postulated by Miloh, 1984, p. 231, we define 
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as an extended form appropriate to treat the nonlinear VWIP. The last term, , can be interpreted as 
the dissipation function given in terms of the flux of energy through the jet root, i.e. 

1 Alternatively, the added mass may be viewed as an explicit function of time; see Miloh, 1991, p. 45. 
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The application of Hamilton’s principle, , in Eq. (1), where 
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virtual work done by the vertical impact force  and  is the body penetration depth, does recover 
the nonlinear problem, given by 
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This is true if Eq. (2) is assumed to be valid a priori, enabling the vertical impact force to be 
obtained from a classical procedure within analytical mechanics. 

�  The �ertical impact force within Wagner’s theory 
Within Wagner’s theory, both, the contact area of the body and the free surface elevation are 

considered to be collapsed onto the horizontal plane (see, e.g., Scolan and Korobkin, 2001, p. 294), 
and so Eq. (4) becomes 0t  at the free surface, , excluding the jet root, , what 
implies 

)(tS free )(tSroot

0  at (see, e.g., Pesce, 2005, p. 396, for a discussion on this issue). Thus, the 
linearized form of the Lagrangian (see, equivalently, Miloh, 1984, p. 232) is given as 
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where 2
2
1 zMT bulkbulk  is the kinetic energy associated to the bulk of the fluid (excluding the jets), 

being  the corresponding added mass (see Casetta and Pesce, 2006, for a deeper discussion on 
this subject).  

bulkM

From the Lagrange equation for linearly dissipative systems and with td/d , the vertical 
impact force expression can be written as 

zz
T

z
T

t
F bulkbulk

d
d .              (8) 

A possible and interesting way to overcome an apparent difficulty in the derivation of  with 
respect to  is to apply a form of Hamilton’s principle given in McIver, 1973, for open systems. z

2 The operator d / dt ought to be interpreted with respect to the relative velocity between the material surface (jet) and the 
control surface (jet root) (see Irschik and Holl, 2004, for a comprehensive discussion on the application of Reynold’s 
transport theorem to movable control surfaces). 
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Applying Hamilton’s principle for open continuous systems 

As a flux of energy exists from the bulk of the fluid to the jet, an open system approach may be 
followed, as in McIver, 1973. The virtual work principle applied to the Wagner’s problem then reads 
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The corresponding Hamilton’s principle for the VWIP can be directly obtained by integration of Eq. 
(9) with respect to time, i.e. 
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The energy balance expression then follows from Eq. (10) by letting the virtual displacements 
coincide with actual displacements, i.e. tdr , and by using Reynold’s transport theorem in 
the sense of  Irschik and Holl, 2002, what leads to 
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Recalling that )(
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(see Pesce, 2003, p. 754), it may be concluded from Eq. (11) that the time rate of kinetic energy 
transfer through the jet root does not depend on the shape of the body and is given by3
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From Eq. (12) and recalling the boundary condition at the jet root, i.e. 02
1

t , we 
have a proper choice for , satisfying Eq. (2), as td/d
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From the point of �iew of Hamilton’s principle for �ariable mass particles 

By using )(
d
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 and 2
2
1 zMT bulkbulk ,  Eq. (10) transforms into 
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Equation (14) is a particular form of the general Hamilton’s principle proposed by Mušicki, 2000, p. 
1067, when applied to the simpler case of mass dependent only on position. In the special case of 
constant impact velocity an ‘added mass potential’ may be defined within Mušicki formalism as 

2
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1 )()( uzMzf bulk , such that the Lagrangian function may be rewritten as 

3 See the particular case of elliptic contact lines in Scolan and Korobkin, 2003. 
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1* . This leads to Hamilton’s principle in the form 

. In other words, in the case of constant impact velocity, half the kinetic energy 

transferred to the liquid goes to the jet, as often emphasized by several authors (see, e.g., Cointe et al., 
2004). Moreover, the system is holonomic. 
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It may be also shown (to be submitted) that the relation between the flux of kinetic energy and the 
explicit variation of the added mass with position, equivalently given by Eqs. (12), (10) or (14), is in 
fact a particular case of a more general result within particle dynamics, derivable from the concept of 
‘fictitious particles’ (see Irschik and Holl, 2002, apud Truesdell and Toupin, 1960). 

�  Conclusions 
Within Wagner’s theory, it was shown that when the added mass is assumed to be explicitly 

dependent on the penetration depth, Hamilton’s principle may be consistently applied by taking into 
account the dissipated energy through the jet root. The vertical impact force can be recovered from 
Hamilton’s principle by interpreting the problem as a dissipative one and relating a Rayleigh’s 
dissipation function with the flux of energy through the jet root.
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